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Chapter 0

Preliminaries

The following contains a brief summary of concepts, definitions, and notation
needed in the later chapters and included here for completeness without much
explanation.

0.1 Relativistic Notation

Space and time coordinates of e.g. a particle are denoted by ~x = (x1, x2, x3)
and t. In special relativity they transform under Lorentz transformations like
the components of a four-vector xµ := (x0, x1, x2, x3) := (c t, x1, x2, x3) with c
the speed of light. In general, greek indices run from 0 to 3, while latin indices
run from 1 to 3. Energy and momentum E and ~p also transform as components
of a four-vector, the four-momentum pµ := (p0, p1, p2, p3) := (E/c, p1, p2, p3).

The metric tensor in Minkowski-space special relativity is constant and
given in a certain convention by

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Upper indices are called contravariant, lower ones covariant ; they can be changed
into one another with the help of the metric, e.g.

gµνA
ν
ρ
σ = Aµρ

σ

Furthermore, for the metric one has

gµ
ν = gµν = δµν = 1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


which is the well-known Kronecker symbol. Another often-used expression is
the Levi-Civita symbol

εµνρσ =


0 any two indices equal
1 µνρσ is an even permutation of (0123)
−1 µνρσ is an odd permutation of (0123)
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The analogous construction exists for εijk.
The scalar product of two four-vectors is defined as

a · b :=

3∑
µ=0

aµb
µ = a0b0 − ~a ·~b =: aµb

µ

where the Einstein summation convention is used (note that the same index
cannot appear more than twice in any term). A four-vector a is called timelike,
if a·a > 0, spacelike for a·a < 0 and lightlike for a·a = 0, which also determines
the causality implications of a.

Tensors of higher rank n have n open indices, either contravariant or covari-
ant.

0.2 Group Theory

Consider a set G of elements gi with i = 1, 2, . . . or uncountable or finite with
an operation ◦ by which two elements can be connected. G is called a group, if
the following axioms hold:

∗ ∀ g1, g2 ∈ G : g1 ◦ g2 ∈ G
∗ ∃ 1 ∈ G : 1 ◦ g = g ◦ 1 = g ∀g ∈ G
∗ ∀g ∈ G ∃ g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = 1

∗ ∀g123 ∈ G : g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3

However, ◦ is not necessarily commutative. If it is, the group is called Abelian.
As an example, consider the set of 2 × 2 matrices with nonzero determinant
together with matrix multiplication as the group operation. One can easily
show that all axioms hold and that the group is not Abelian.

A subgroup H is a subset of G on which the same operation ◦ is defined,
and all axioms hold for H alone. In the above example, a subgroup may be
constructed by restricting the matrices to those with determinant +1.

An invariant or normal subgroup I is a subgroup of a group G such that

∀ y ∈ I, g ∈ G : g ◦ y ◦ g−1 ∈ I ; (1)

one also writes

∀ g ∈ G : gI = Ig , (2)

In the same notation, for a subgroup H of a group G, a left coset of H in G is
defined by the set gH of all elements gh with h ∈ H generated via an element g
of G; a right coset is defined analogously. If H is actually an invariant subgroup,
then left and right cosets are the same for all g ∈ G. The number of left and
right cosets of H in G is the same and called the index of H in G.
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0.3 Representations of Groups

A representation D of a group G with elements g is a homomorphism which
maps G onto the group of automorphisms G̃ with elements g̃ on a given set
with structure. The term homomorphism describes a map that conserves the
structure of a set with respect to an operation defined among its elements, e.g. a
group operation’s properties are mapped onto the representation:

D(g) = g̃

D(1) = 1̃

D(g2 ◦ g1) = g̃2◦̃g̃1 = D(g2)◦̃D(g1)

A homomorphism is called isomorphism, if it is bijective. A homomorphism
is called endomorphism, if it maps a set V onto itself. And finally, a bijective
endomorphism is called an automorphism. A representation is called faithful, if
the homomorphism D is injective. It is trivial, if all elements of the group are
mapped onto the unit element of the automorphism group.

For our purposes it is interesting to talk about linear representations, which
are obtained by mapping the group onto the group of automorphisms on a
vector space. In practice this means linear transformations (matrices) in the
Rn or Cn. In that case one is concerned with square invertible real or complex
matrices of dimension n × n, which can also have more restrictive properties,
like e.g. a determinant of +1.

Representations can be finite- or infinite-dimensional. In the latter case the
representation maps the group onto the group of linear bounded operators on a
complex vector (Hilbert) space. The operators’ inverses must also be bounded.

Another important concept is the (ir-)reducibility of a representation. As-
sume a vector space with n dimensions which has a subspace K with m < n
dimensions, which is “invariant” under G, i.e. if k ∈ K then D(g) k ∈ K ∀ k ∈
K, g ∈ G. Then the matrix D(g) = g̃ has the form

g̃ =

(
Pg̃ Qg̃
0 Sg̃

)
where Pg̃ has dimension m×m, Sg̃ has (n−m)×(n−m) and Qg̃ has m×(n−m),
if one can find coordinates (unit vectors) such that an element k ∈ K has ki = 0
for i = m+ 1, . . . , n.

Such a representation is called reducible. If there is no such subspace, the
representation is called irreducible. If Qg̃ = 0 the representation is decom-
posable. Every system of reducible unitary matrices is decomposable, because
unitary transformations conserve orthogonality between vectors. Therefore di-
viding the basis (unit) vectors among e.g. K1 and K2 means that they are
orthogonal to each other and Qg̃ = 0.

0.4 Quantum Theory

In quantum theory, physical states are represented by rays in a Hilbert space H.
A Hilbert space is a complex vector space on which an inner product is defined,
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which induces a norm on the space, and the vector space is complete. If |Φ〉
and |Ψ〉 are vectors in H (called state vectors), then so is the linear combination
ξ|Φ〉+ η|Ψ〉 with the complex numbers ξ and η.

The existence of the norm on H means that for any two state vectors |Φ〉
and |Ψ〉 there is a complex number defined by 〈Φ|Ψ〉 = 〈Ψ|Φ〉∗, with ∗ denoting
the complex conjugate. This construction satisfies

∗ 〈Φ|ξ1Ψ1 + ξ2Ψ2〉 = ξ1〈Φ|Ψ1〉+ ξ2〈Φ|Ψ2〉
∗ 〈η1Φ1 + η2Φ2|Ψ〉 = η∗1〈Φ1|Ψ〉+ η∗2〈Φ2|Ψ〉
∗ 〈Ψ|Ψ〉 ≥ 0

the latter implying that the norm only vanishes, if |Ψ〉 = 0.
A ray is a set of normalized vectors (i.e. 〈Ψ|Ψ〉 = 1) such that |Ψ〉 and |Ψ′〉

belong to the same ray if |Ψ′〉 = ξ|Ψ〉 with the phase ξ ∈ C, |ξ| = 1.
Observables in quantum theory are represented by hermitian operators.

These are mappings |Ψ〉 → A|Ψ〉 of H onto itself, linear in the sense that

A|ξΨ + ηΦ〉 = ξA|Ψ〉+ ηA|Φ〉 .

They satisfy A† = A (Hermiticity), i.e. their eigenvalues given by

A|Ψ〉 = α|Ψ〉

are real. The adjoint A† to A is defined by

〈Φ|A†Ψ〉 = 〈AΦ|Ψ〉 = 〈Ψ|AΦ〉∗ .

Eigenvectors corresponding to different αs are orthogonal.
As noted above, a physical state corresponds to a rayR. ConsiderR1,R2, . . .

to be mutually orthogonal. Then, if the state of a particular system is repre-
sented by R, the probability of finding it in the state represented by Rn is

P(R → Rn) = |〈Ψ|Ψn〉|2

with ∑
n

P(R → Rn) = 1

if the set of state vectors |Ψn〉 is complete.

0.5 Matrices

Matrices appear in our context (and in physics in general) in many different
circumstances. They can have a few interesting properties summarized here:

• The dimension of a matrix is written as n×m with n the number of rows
and m the number of columns

• For a square matrix one has n = m
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• The determinant of a matrix A of dimension n × n with elements aijkl...
carrying n indices running from 1 to n each is

det(A) =

n∑
i,j,k,...,z=1

εijk...z a1i a2j a3k . . . anz

• A singular matrix has determinant = 0

• A nonsingular matrix is invertible; the inverse of A is denoted by A−1

• Matrix operations can be element-wise addition, subtraction, as well as
matrix-multiplication C = A ·B defined by

cij =
∑
k

aikbkj

in terms of their elements. Division by a matrix can be realized via
multiplication with the inverse. Caution: multiplication from the left or
right in general makes a difference.

• A matrix A’s transpose AT is defined via (AT )ij := Aji

• A matrix A with AT = A−1 is called orthogonal

• A matrix A with complex elements has an adjoint or Hermitian conjugate
A† defined via (A†)ij := A∗ji with ∗ denoting complex conjugation

• A matrix A with A† = A is called Hermitian

• A matrix A with A† = A−1 is called unitary

• Functions of matrices, e. g., the exponetial function expA, can be defined
via appropriate series expansions of the desired function.

0.6 Symmetries in Quantum Theory

A symmetry transformation in physics changes our point of view (e.g. the co-
ordinate system), but not the results of possible experimental measurements.
For example, an observer O sees a system represented by a ray R or R1 or
R2 while another observer O′ has R′ or R′1 or R′2. They must find the same
probabilities

P(R → Rn) = P(R′ → R′n)

if the transformation between the observers’ points of view is a symmetry trans-
formation.

Wigner in the early 1930s showed that for any such transformation of rays
R → R′ of rays one can define an operator U on H such that if |Ψ〉 ∈ R then
U |Ψ〉 ∈ R′, where U is either unitary and linear

∗ 〈UΦ|UΨ〉 = 〈Φ|Ψ〉
∗ U |ξΦ + ηΨ〉 = ξU |Φ〉+ ηU |Ψ〉
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or antiunitary and antilinear

∗ 〈UΦ|UΨ〉 = 〈Φ|Ψ〉∗
∗ U |ξΦ + ηΨ〉 = ξ∗U |Φ〉+ η∗U |Ψ〉

Recall at this point that the adjoints of linear operators L and antilinear oper-
ators A are different:

∗ linear operator L: 〈Φ|L†Ψ〉 = 〈LΦ|Ψ〉
∗ antilinear operator A: 〈Φ|A†Ψ〉 = 〈AΦ|Ψ〉∗ = 〈Ψ|AΦ〉

Both the unitarity and antiunitarity conditions are of the form

U † = U−1

Now consider the trivial (identity) symmetry transform. It maps R onto R
and is represented by U = 1, which is unitary and linear. From the latter it
follows that any continuous symmetry (e.g. rotation symmetry) that can be
made trivial by letting some parameter ε approach zero has to be represented
by unitary and linear operators U . For infinitesimally small ε one has

U = 1 + i ε t

If U is unitary and linear, t must be hermitian and linear (which reminds us of
observables in quantum theory). Indeed, in this way observables and symmetry
transformations are connected (e.g. Pµ, ~J , etc.).

Symmetry transformation sets can be groups:

T1 : Rn → R′n
T2 : R′n → R′′n

T2 ◦ T1 : Rn → R′′n
Furthermore,

T−11 : R′n → Rn
∃ an identity 1 : Rn → Rn

Unitary operators U(T ) mirror the group structure, but they operate on
vectors, not rays. So on one hand:

|Ψn〉 ∈ R
U(T1)|Ψn〉 ∈ R′

U(T2)U(T1)|Ψn〉 ∈ R′′

On the other hand,

U(T2 ◦ T1)|Ψn〉 ∈ R′′

as well, so they can only differ by a phase:

U(T2)U(T1)|Ψn〉 = eiϕn(T2,T1)U(T2 ◦ T1)|Ψn〉
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In general, i.e. for “states with the same quantum numbers” ϕn does not depend
on n, i.e. the state vector |Ψn〉. If ϕ = 0 then one has a representation of the
group by the operators U , if not one has a projective representation.

A special kind of group is a Lie group: there the transformations are char-
acterized by a set of real continuous parameters

T = T (ϑ) .

The T (ϑ) are connected continuously to 1 within the group, which means that
for a unitary representation of the Lie group they are represented by unitary
operators for any ϑ. The group composition law reads

T (ϑ2) ◦ T (ϑ1) = T (f(ϑ2, ϑ1))

where f is some function of the two parameters from the composed transfor-
mations. Special cases are

f(ϑ, 0) = f(0, ϑ) = ϑ

In the neighborhood of 1 the operator U corresponding to the transformation
T (ϑ) is given by

U(T (ϑ)) = 1 + i ϑa ta +
1

2
ϑbϑc tbc

where the ta are the generators of the group. As already mentioned above,
unitary U implies hermitian ta, which are connected to observables.

From the group operations follow commutation relations for the generators
t of the Lie group

[tb, tc] = i fabc ta

The set of operators satisfying these relations is called the corresponding Lie
algebra. The real constants fabc are called its structure constants.

One can find operators Ci which commute with every generator of the Lie
group, i.e. all elements of the Lie algebra. These are called Casimir operators
and can be used to identify representations of the group via their eigenvalues.
Their eigenvalues can be also used to label states together with the eigenvalues
of those ta that commute with the Hamiltonian.

To close this section it should be noted that any linear combination of
generators is again a generator.

0.7 Exercises

This section contains a list of exercises the reader may use to intensify her/his
engagement with the subject. In particular, the goal should be to make the
concepts introduced above more immediate and familiar to the point, where
their application feels natural.

Exercise 0.1 Consider the moments

dν := −xµTµν and kµν := (xσx
σgµ% − 2xµx%)T%

ν

of the (symmetric) energy-momentum tensor Tµν of a closed system, i. e.,
∂µT

µν = 0 and calculate their four-divergences ∂νd
ν and ∂νk

µν
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Exercise 0.2 Consider the tensor Fµν to be antisymmetric Fµν = −F νµ.

(a) Show that F is traceless

(b) Show that the tensor defined by

Tµν :=
1

4π
(FµαFα

ν +
1

4
gµνFαβFαβ)

is symmetric and traceless

(c) Calculate the moments ∂νd
ν and ∂νk

µν defined above for this con-
struction of Tµν

Exercise 0.3 The tensor F̂µν := 1
2ε
µν%σF%σ is called dual to F .

(a) Show that the complex tensor fµν := 1
2(Fµν + iF̂µν) is dual to itself

in the sense that f̂µν = −ifµν .

(b) How many independent components does f have?

Exercise 0.4 From everyday life, construct an example for a group, i. e., a set
with an operation defined on it and explicitly prove that the group axioms
hold.

Exercise 0.5 For your example from Exercise 0.4, check whether your group
has any (nontrivial) invariant subgroups. If yes, find and detail them
and the related cosets; determine their indices. If there is no nontrivial
invariant subgroups in your example, think of a modification such that
there are and perform the aforementioned tasks.

Exercise 0.6 Prove that

[A,Bn] = n[A,B]Bn−1 , if [[A,B], B] = 0

Exercise 0.7 Construct an argument as to why it makes sense to label states
in quantum theory using the eigenvalues of the Casimir operator(s) of a
relevant symmetry group.

Achievement

After studying this section and performing the exercises (in fact, ideally already
before that) the reader should be able and feel confident to do the following:

• Manipulate tensors in Minkowski space using covairant notation

• Work with matrices, operators, bras, and kets, and their properties

• Understand and work with the basic ideas of a group, a representation,
and a symmetry in general

• Perform mathematical proofs and understand basic related techniques
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Chapter 1

Relativity and Quantum
Theory

We now come to the basic principles of the interconnection of quantum theory
and the theory of special relativity. In the following we will use the standard
particle-physics convention to set c = 1 and ~ = 1, i.e. the units for mass, energy
and momentum are given in MeV , GeV , etc., where the appropriate factors of
c are implicit. Units for length and time are given in units of MeV −1, etc.

1.1 The Poincaré Group

Special relativity demands physics to be the same in inertial frames. Such
frames are related by space-time translations in four dimensions

x′µ = xµ + aµ with aµ = const.

and Lorentz transformations, i.e. rotations around three space directions and
boosts in three space directions

x′µ = Λµνx
ν

which in total amounts to ten degrees of freedom.
For inertial frames connected via Lorentz transformations one demands that

the speed of light is the same in every such frame. More concretely∣∣∣∣d~xdt
∣∣∣∣⇒ dxµdxµ = 0 ,

i.e. the line element for light is (obviously) light-like. With regard to a Lorentz
transformation one has

gµνdx
µdxν

!
= gµνdx

′µdx′ν with dx′µ = Λµνdx
ν

From this it follows immediately that

gµνΛµρΛ
ν
σ = gρσ (1.1)
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and
ΛρµΛσνg

µν = gρσ .

Furthermore, it is clear from Eq. (1.1) that

(DetΛ)2 = 1 and DetΛ = ±1 ,

which means that Λµν has an inverse:

gµνΛµρΛ
ν
σ = gρσ ⇒

gµνΛµρΛ
ν
σg

στ = δτρ ⇒
ΛµρgµνΛνσg

στ = ΛµρΛµ
τ = δτρ

and thus (Λ−1)µν = Λν
µ (1.2)

Space-time translations and Lorentz transformations together are the Poincaré
transformations. A transformation T (Λ, a) corresponds to

x′µ = Λµνx
ν + aµ

These transformations form a group with the group operation being the sub-
sequent application of two transformations. One can briefly check the group
axioms: the first condition is that the composition of two Poincaré transforma-
tions is again a Poincaré transformation. More concretely, one can ask what
the elements Λ and a of the composed transformation

T (Λ2, a2) ◦ T (Λ1, a1) = T (Λ, a)

are. A simple calculation yields

Λ = Λ2 ◦ Λ1 and a = Λ2a1 + a2

which satisfy the criteria for a Poincaré transformation, in particular Λ satisfies
Eq. (1.1) and a is a constant four-vector.

Next, there is an identity, namely

1 = T (1, 0) = T (δµ
ν , 0) ,

and each group element has an inverse, namely

T−1(Λ, a) = T (Λ−1,−Λ−1a) .

Finally, the associative rule holds, since matrix multiplication is associative and
the construction from the composition law preserves associativity as well.

Now let us consider the substructure of the Poincaré group. Take Eq. (1.1)
and set ρ = σ = 0. Then one has

gµνΛµ0Λ
ν
0 = g00 = 1

Writing all elements explicitly this yields

(Λ0
0)

2 −
3∑
i=1

(Λi0)
2 = 1 and (Λ0

0)
2 = 1 +

3∑
i=1

(Λi0)
2
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where the right-hand side is a sum of one and squares and thus greater or equal
than 1:

|Λ0
0| ≥ 1⇒ Λ0

0 ≥ 1 or Λ0
0 ≤ −1

At this point, note that the identity element 1 has Λ0
0 ≥ 1.

The Poincaré group is also called the inhomogeneous Lorentz group. Its
subgroups are

• the Lorentz group, i.e. a = 0

• Transformations with DetΛ = +1 form subgroups of both the homoge-
neous and inhomogeneous Lorentz groups and are named proper (in)homo-
geneous Lorentz group.

• Transformations with (additionally) Λ0
0 ≥ 1 form the proper orthochronous

Lorentz group

• Only proper orthochronous Lorentz transformations are continuously con-

nected to 1. The jumps between DetΛ = ±1 and Λ0
0
≥
≤ ±1 are discontin-

uous. Still, any Lorentz transformation can be reached from 1 by proper
orthochronous transformations times the discrete Lorentz transformations
space inversion P, time reversal T , and their composition PT given ex-
plicitly in Sec. 1.3. Together with 1 these discrete transformations are a
subgroup of the Lorentz group as well.

1.2 The Poincaré Algebra

The Poincaré group is a ten-parameter Lie group. Its Lie algebra of generators
can be obtained by writing a Poincaré transformation close to 1 (meaning Λµν =
δµν and aµ = 0) as

Λµν = δµν + ωµν and aµ = εµ

with ω and ε infinitesimal. Now consider Eq. (1.1) for such an infinitesimal
Lorentz transformation and get

gσρ = gµν(δµρ + ωµρ)(δ
ν
σ + ωνσ) = gσρ + ωσρ + ωρσ +O(ω2)

where terms of quadratic and higher order in ω are neglected and one obtains

ωσρ = −ωρσ

which means that ω is antisymmetric. It is a tensor of rank two in four di-
mensions and thus the antisymmetry implies that out of the in general 16
independent components only 6 actually independent ones remain, which can
be characterized via 6 independent parameters. Together with the additional
four independent parameters in εµ one gets the ten parameters characteristic
for the Poincaré group and corresponding to the ten generators.
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Let us now have a look at a (projective) unitary representation of the
Poincaré group, i.e. we are looking for unitary operators to represent, in gen-
eral, the transformation T (Λ, a). First, in particular, it is interesting to consider
T (1 + ω, ε):

U(T (1 + ω, ε)) = 1 +
1

2
iωρσJ

ρσ − iερP ρ + terms of higher order

From the unitarity of U it follows that both J† = J and P † = P are hermi-
tian operators. Furthermore, since ω is antisymmetric, one can also make J
antisymmetric. The next question is, what the transformation properties of J
and P under Poincaré transformations are. To investigate this, we look at the
product

U(Λ, a)U(T (1 + ω, ε))U−1(Λ, a)

and evaluate it. On the one hand, this can be written as

U(Λ, a)

[
1 +

1

2
iωρσJ

ρσ − iερP ρ
]
U−1(Λ, a) .

On the other hand, one can evaluate the product completely and then compare
coefficients of the infinitesimal independent terms ω and ε, respectively. More
precisely, one first composes the transformations via the group composition rule
to get

U(Λ, a)U(T (1 + ω, ε))U−1(Λ, a) = U(1 + ΛωΛ−1,Λε− ΛωΛ−1a) =

which yields, writing everything in terms of infinitesimals again

= 1 +
i

2
(ΛωΛ−1)ρσJ

ρσ − i(Λε− ΛωΛ−1a)ρP
ρ .

Comparison of the coefficients of ε yields

U(Λ, a)P ρU−1(Λ, a) = Λµ
ρPµ (1.3)

and the same procedure for ω produces

U(Λ, a)JρσU−1(Λ, a) = Λµ
ρΛν

σ(Jµν − aµP ν + aνPµ) (1.4)

which are the desired transformation properties of the Poincaré generators un-
der Poincaré transformations.

One can see that P transforms like a four vector and for a homogeneous
Lorentz transformation (a = 0), J transforms like a tensor of rank two. For a
pure translation (Λ = δ), P is invariant, while J changes.

The next step is to determine the algebra itself, i.e. the commutation re-
lations of the generators among each other. For this purpose, consider the
transformation rules above with (Λ, a) infinitesimal as well:

Λ = 1 + ω , a = ε
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and get

U(Λ, a) = 1 +
i

2
ωµνJ

µν − iεµPµ

U−1(Λ, a) = 1− i

2
ωµνJ

µν + iεµP
µ

Inserting this into Eq. (1.4) and comparing coefficients of the independent in-
finitesimals ω (and ε) yields

i [Jµν , Jρσ] = gνρJµσ − gµρJνσ − gσµJρν + gσνJρµ (1.5)

The same procedure for Eq. (1.3) yields two relations. The first comes from
comparing coefficients of ω, namely

i [Pµ, Jρσ] = gµρP σ − gµσP ρ (1.6)

and the second from comparing the coefficients of ε is

[Pµ, P ν ] = 0 . (1.7)

To better understand what the Poincaré algebra contains and implies we will
rewrite it here in terms of the commonly used operators H and ~P , the Hamilto-
nian and the three-momentum operator, which constitute the four-momentum
operator Pµ, and the angular momentum operator ~J = (J1, J2, J3) as well as
the boost operator ~K = (K1,K2,K3). The components of the latter two vec-
tors transform together under Lorentz transformations as the six independent
components of an antisymmetric tensor of rank two, namely Jµν introduced
above. One has

Jµν =


0 −K1 −K2 −K3

K1 0 J3 −J2
K2 −J3 0 J1
K3 J2 −J1 0


Inserting these definitions into Eqs. (1.5) – (1.7) one gets the commutation
relations for the 10 operators {H, ~P , ~J, ~K} in the form

[Ji, Jj ] = iεijkJk (1.8)

[Ji,Kj ] = iεijkKk (1.9)

[Ki,Kj ] = −iεijkJk (1.10)

[Ji, Pj ] = iεijkPk (1.11)

[Ki, Pj ] = iδijH (1.12)

[Ki, H] = iPi (1.13)

[Ji, H] = [Pi, H] = [H,H] = 0 (1.14)

H plays a special role in quantum theory as the generator of the time evolu-
tion of the system. Operators that commute with H are “conserved”, which
means that one can use their eigenvalues to label the states. Under Poincaré
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transformations the situation is more complicated. The commutation relations
above tell us that all components of the four-momentum commute with each
other. On the other hand, one can choose any single component of the angular
momentum operator, Ji, and then go ahead to diagonalize it together with the
Hamiltonian simultaneously, but not together with the other momentum com-
ponents. Below we will see, that a more general construction related to spin is
required to achieve this. Still, the eigenvalues of neither the four-momentum
operator nor a spin component are invariant under Poincaré transformations,
i.e. in a general relativistic setup, states labeled by such eigenvalues (i.e. mo-
menta and/or spin projections) will have to be properly transformed under
e.g. Lorentz transformations.

1.3 Discrete Lorentz Transformations

Now let us consider the discrete Lorentz transformations space inversion P,
time reversal T , and their product PT :

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,PT =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


As already mentioned above, the set {1,P, T ,PT } forms a discrete subgroup of
the Lorentz and Poincaré groups. While one has to note at this point, that cer-
tain interactions in physical theories can violate these symmetries, we consider
them here as symmetry transformations and look for their representations in
form of operators. We define, in the notation of operators representing Poincaré
transformations,

P := U(P, 0) and T := U(T , 0)

such that for a Poincaré transformation given by (Λ, a) one has

PU(Λ, a)P−1 = U(PΛP−1,Pa)

TU(Λ, a)T−1 = U(T ΛT −1, T a)

Now one can find the operations of P and T on the Poincaré generators by
taking (Λ, a) infinitesimal once again and comparing the coefficients of ω and ε
in analogy to the constructions above to get

P i JρσP−1 = iPµρPνσJµν
P i P ρP−1 = iPµρPµ (1.15)

T i JρσT−1 = i TµρTνσJµν
T i P ρT−1 = i TµρPµ (1.16)

Factors of i have not been canceled yet, since no decision has been made on
whether P and T are linear (and unitary) or antilinear (and antiunitary). Take
ρ = 0 in Eq. (1.15), then one has

P iHP−1 = iH .
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If P were antilinear, then the left-hand side would be

−iPHP−1

and the equation would read

PHP−1 = −H or HP−1 = −P−1H .

In this case, for each state |Ψ〉 with

H|Ψ〉 = |Ψ〉E , E > 0 ,

there would have to also be a state P−1|Ψ〉 with

HP−1|Ψ〉 = −P−1H|Ψ〉 = −P−1|Ψ〉E

i.e. an energy smaller than that of the vacuum (zero energy). Thus, P cannot be
antilinear, but must be linear and therefore unitary. Furthermore, P commutes
with the Hamiltonian. For T the same argument works exactly the other way
round; it turns out that T must be antilinear and therefore antiunitary.

With this knowledge, one can now evaluate the transformation properties
given in covariant form above. Furthermore one can rewrite everything in the
more intuitive versions using the operators {H, ~P , ~J, ~K} as

P ~J P−1 = + ~J T ~J T−1 = − ~J
P ~K P−1 = − ~K T ~K T−1 = + ~K (1.17)

P ~P P−1 = −~P T ~P T−1 = −~P

In other words, the angular momentum operator transforms like an axial vec-
tor, the Lorentz-boost operator and three-momentum operator transform like
polar vectors. Under time reversal, the angular momentum operator and three-
momentum operator change direction, while the boost operator does not.

1.4 Casimir Operators of the Poincaré Group

There are two operators, whose eigenvalues are perfectly suited to classify states
with regard to Poincaré transformations. This quest leads us to the Casimir
operators of the Poincaré group, which per definitionem commute with all the
generators. There are two Casimir operators of the Poincaré group: the first
is the square of the four-momentum operator, the mass-operator squared given
by

M2 := PµP
µ . (1.18)

If the spectral condition M2 ≥ 0 is satisfied (which it usually is in a sensible
physical theory), the mass operator M can be written as the nonnegative square
root of M2 which is defined by diagonalizing M2 and replacing all eigenvalues
by their nonnegative square roots.

As a consequence, physical states labeled by the mass of a particle require
no adjustment with regard to this label in different inertial frames. Another
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consequence is that irreducible representations of the Poincaré group can be
distinguished (labeled) by the mass of the particle under consideration (e.g. m =
0, m 6= 0).

The second Casimir operator of the Poincaré group is the square WµWµ of
the Pauli-Lubanski vector operator, which is given by

Wµ :=
1

2
εµνρσJ

νρP σ . (1.19)

The hermitian axial-vector operator Wµ satisfies the commutation relations

[Wµ, P ν ] = 0 (1.20)

i
[
Wµ, Jαβ

]
= gµαW β − gµβWα (1.21)

[Wµ,W ν ] = iεµνρσWρPσ . (1.22)

Furthermore PµW
µ = 0, which follows immediately from the definition of

the Pauli-Lubanski operator. Another useful defining relation is WµWµ =:
−M2 ~j2 , where the vector operator ~j can be understood as the total intrinsic
spin operator of the system (see below). At this point, one can now ask again
for an as-large-as-possible set of mutually commuting operators, which can be
diagonalized simultaneously. Clearly, the two Casimir operators qualify, since
they commute with all generators of the Poincaré group. In addition, one has
the components of the three-momentum ~P , and one of the components of the
spin vector operator ~j defined from Wµ can be chosen, which commutes with
all other operators in the set. Thus, one arrives at {M,~j2, ~P , j3}. When consid-
ering the transformation properties of one-particle states below, it will become
clear how the eigenvalues of these operators react to Poincaré transformations
of quantum states.

1.5 Spin Operators in Relativistic Quantum Theory

When discussing spin operators in relativistic quantum theory one has to also
discuss boosts. In fact, different boosts have various effects such as differently
constructed spin vector operators, differently constructed position operators, or
different invariance considerations of objects under Poincaré transformations.

Regarding the construction of a spin vector operator in relativistic quantum
theory, the choice of boost plays an important role due to the following situation:
Although the spin operator is unambiguously defined in terms of the Poincaré
generators, there is an infinite number of spin vector valued functions of the
generators that satisfy angular-momentum commutation relations and whose
square is the total spin. Essentially, one has to decide how to “perform a
transformation” to the restframe (of a massive particle) by a particular boost.
The most common choice is a rotationless or canonical boost, which is denoted
as a Lorentz transformation by Λ = Lc(Q) where Q is the velocity operator
P/M and thus Lc is to be understood as an operator. The other two noteworthy
boosts are called front form and helicity boosts, respectively.

To construct a spin vector operator from the Pauli-Lubanski operator, one
first realizes that for a timelike four momentum and with PµW

µ = 0 as noted
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above, Wµ is spacelike and can thus be transformed to the rest frame of the par-
ticle with the corresponding Lorentz transformation. So, one has to “perform
a boost” and “divide by the mass”:

(0,~jc) :=
1

M
Lc(Q)µνW

ν (1.23)

The prerequisites to this equation are that Lc(Q), when applied to simultaneous
eigenstates of ~P and M takes on the value of a Lorentz transformation that
transforms P to (M,~0) and that all components of the four momentum operator
commute with the Pauli-Lubanski operator. Analogous relations hold to define
front form spin and helicity spin vectors.

From Eq. (1.23) and various commutation and transformation properties
found above it follows that

~jc ·~jc = − 1

M2
W 2 (1.24)

and
M2[jic, j

j
c ] = iεijkjlcM

2 . (1.25)

If M has no vanishing eigenvalues, one can divide it out of the equation to
arrive at the usual spin commutation relations.

Finally one can construct the spin vector operator in terms of the Poincaré
generators. For canonical spin, one has

~jc =
1

M

(
~W −

~PW 0

M +H

)
=

1

M

(
(H ~J − ~P × ~K)−

~P (~P · ~J)

M +H

)
(1.26)

Analogous formulae can be found for front from and helicity spin.

1.6 The Position Operator
in Relativistic Quantum Theory

The definition of a position operator in relativistic quantum theory is problem-
atic in the sense that position is not an observable. To be more specific, in the
discussion of the relativistically invariant localization of a particle with mass
m one encounters a problem in the sense that such a particle cannot be in an
invariant state and localized more precisely than its Compton wavelength. In
a model with particle-antiparticle creation one can argue along the lines that
to probe smaller and smaller distances one needs higher and higher momenta,
which eventually can create particle-antiparticle pairs, where the particle cre-
ated is identical to the one to be localized by the probe. In this way, uncertainty
in the localization appears, also at the scale of the particle’s Compton wave-
length.

Nevertheless, a position operator can be constructed, which is canonically
conjugate to the momentum operator and commutes with the spin operator of
the system. This operator is called the Newton-Wigner position operator. It
is constructed from the Poincaré generators; it itself is not a generator. The
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construction is not unique, since it depends on the choice of spin operator via
the commutation relation. As a concrete example, the Newton-Wigner operator
for canonical spin is

~Xc = −1

2

(
1

H
~K + ~K

1

H

)
−
~P × (H ~J − ~P × ~K)

MH(H +M)
(1.27)

As a final note one could state that position operators are perfectly fine to use
in a relativistic context, except for an interpretation as an observable.

1.7 Preview:
The Poincaré Algebra in Quantum Field Theory

In a quantum field theory the central object of physics input is the Lagrangian
(density). In such a formalism, symmetries are built-in via construction of that
Lagrangian density and result in/are manifested by conserved currents/charges.

While one deals with Poincaré transformations from this point of view, we
want to also put emphasis here on the satisfaction of the Poincaré algebra
by the Poincaré generators as constructed from the Lagrangian of the theory
under consideration. First, note that symmetries can be global or local (the
latter depend on x). They can occur at the level of the action, the Lagrangian,
or the Lagrangian density (consider, e.g., spatial translations).

In general, one can use Noether’s theorem to study symmetries and the
related conserved currents in a Lagrangian formalism. Regarding space-time
translations one uses the energy-momentum tensor Tµν and finds

∂µT
µ
ν = 0 .

In analogy, for Lorentz transformations, one gets from a Lorentz invariance of
the Lagrangian density that

∂ρMρµν = 0 where Mρµν = −Mρνµ

(this corresponds to a conserved current for each of the elements of the familiar
infinitesimal parameters ωµν defined in Sec. 1.2). In both cases one can perform
an integral over space, d3x, to obtain

Pν =
∫
d3x T 0

ν
d

dt
Pν = 0 (1.28)

and Jµν =
∫
d3xM0

µν
d

dt
Jµν = 0 . (1.29)

On closer inspection, one can define a symmetric version of Tµν , the Belinfante
tensor Θµν with again

Pν =

∫
d3x Θ0

ν

and subsequently write

Mρµν := xµΘρν − xνΘρµ
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which leads to
∂ρMρµν = Θµν −Θνµ = 0

due to the symmetry of Θ mentioned above. Finally, one has

Jµν =

∫
d3x (xµΘ0ν − xνΘ0µ) .

Starting from these constructions of T and Θ from canonical field variables as
well as their commutation relations one can explicitly show the validity of the
Poincaré algebra.

1.8 Exercises

Exercise 1.1 Other than usual, consider Lorentz transformations out of our
context simply reduced to their matrix structure when transforming four
vectors in Minkowski space. Furthermore, here we explicitly have both
c 6= 1 and the boost velocity v.Prove Eq. (1.2) by using the explicit Lorentz
transformation matrix

Λµν =


γ e1βγ e2βγ e3βγ

e1βγ 1 + (γ − 1)e21 (γ − 1)e1e2 (γ − 1)e1e3
e2βγ (γ − 1)e1e2 1 + (γ − 1)e22 (γ − 1)e2e3
e3βγ (γ − 1)e1e3 (γ − 1)e2e3 1 + (γ − 1)e23


where β = v

c , ~e is the unit vector in the direction of the velocity v and

γ = (1− β2)−1/2

Exercise 1.2 Show that the set {1,P, T ,PT } is a subgroup of the Lorentz
group.

Exercise 1.3 Prove Eqs. (1.3) and (1.4) explicitly.

Exercise 1.4 From the transformation properties of the Poincaré generators,
Eqs. (1.3) and (1.4), derive the Poincaré algebra, Eqs. (1.5) – (1.7).

Exercise 1.5 In analogy to Exercise 1.3, prove the four equations under (1.15)
and (1.16) explicitly.

Exercise 1.6 In analogy to the argument used to prove the unitarity of P in
Sec. 1.3, prove explicitly that T is antiunitary.

Exercise 1.7 Consider the Pauli-Lubanski vector operator Wµ

(a) Prove Eq. (1.20) explicitly from the commutation relations of Wµ

with the generators of the Poincaré group

(b) Prove Eq. (1.22) with the help of (1.20) and (1.21).

(c) With the help of these relations, prove explicitly that PµPµ and
WµWµ are indeed Casimir operators of the Poincaré group.

(d) Calculate the general expression for WµWµ in terms of the Poincaré
generators Pµ and Jµν .
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Achievement

After studying this section and performing the exercises the reader should be
able and feel confident to do the following:

• Understand and apply Lorentz- and Poincaré transformations at the level
of group and representation theory

• Know the structure of the Poincaré group and algebra

• Be able to derive a Lie algebra’s structure from the group properties and
work with the generators.

• Understand the meaning and properties of the Poincaré generators

• Understand the meaning and properties of the discrete Lorentz transfor-
mations

• Know the Casimir operators of the Poincaré group and understand their
properties and implications

• Have a basic understanding of the concept of the spin vector and position
operators in relativistic quantum theory

• Anticipate the construction of the Poincaré generators in the formalism
of a relativistic quantum field theory
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Chapter 2

Representations of the
Poincaré group

2.1 One-Particle States

The next goal is to classify one-particle states via their transformation prop-
erties under the Poincaré group. We will label the one-particle state to be
transformed by its four momentum p and spin projection σ such that, since the
four momentum and Pauli-Lubanski operators commute,

Pµ|p, σ〉 = |p, σ〉pµ

Note that a translation by some finite a is written as

U(1, a) = e−iP
µaµ

This can be achieved by going from 1 to the finite a via a number of N small
steps so that one has a product of N transformations of the form

(1 + Pµaµ/N)N

which in the limit N → ∞ gives the exponential function. Analogously, for
a rotation R~ϑ

around a certain axis by a certain angle, both defined via the

vector ~ϑ, one has

U(R~ϑ
, 0) = e−i

~J ·~ϑ .

Next, note that any Poincaré transformation can be decomposed into a pure
Lorentz transformation and a pure translation afterwards:

T (Λ, a) = T (1, a) ◦ T (Λ, 0) .

As a result, one can study the transformation properties of a state under trans-
lations and Lorentz transformations separately.

Thus, under translations one has

U(1, a)|p, σ〉 = e−iP
µaµ |p, σ〉 = e−ip

µaµ |p, σ〉 . (2.1)
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What about Lorentz transformations? To shorten the following equations, we
use the notation U(Λ, 0) ≡ U(Λ). First we determine the four-momentum
eigenvalue of the state U(Λ)|p, σ〉 and obtain

PµU(Λ)|p, σ〉 = U(Λ)U−1(Λ)PµU(Λ)|p, σ〉 = U(Λ)(Λ−1ρ
µP ρ)|p, σ〉

= U(Λ)ΛµρP
ρ|p, σ〉 = U(Λ)|p, σ〉Λµρpρ

Regarding the spin projection we can say at this point that U(Λ)|p, σ〉 is a linear
combination of |Λp, σ′〉 with

U(Λ)|p, σ〉 =
∑
σ′

Cσ′σ(Λ, p)|Λp, σ′〉 (2.2)

Note that for block-diagonal C one has a reducible representation of the Lorentz
group. In the following we will study the properties of the coefficients C in
irreducible representations of the Lorentz group.

To study the C, note that all proper orthochronous Lorentz transformations
leave p2 invariant and that for timelike or lightlike momenta (p2 ≤ 0) they also
leave the sign of p0 invariant. We start by defining a standard momentum
k, which for a massive particle is given in the particle’s rest frame, and use
a (canonical) boost Lc(p/m) to bring it to the momentum p which the state
under consideration should have

pµ = Lc
µ
ν(p/m)kν . (2.3)

Then one can define the state |p, σ〉 by (using p synonymously instead of p/m
as the argument of the boost)

|p, σ〉 = N(p)U(Lc(p))|k, σ〉 ,

where N is some normalization factor to be determined later. For now we
want to know the transformation property of |p, σ〉. To obtain this, apply an
arbitrary Lorentz transformation to the definition just given and get

U(Λ)|p, σ〉 = U(Λ)N(p)U(Lc(p))|k, σ〉 = N(p)U(ΛLc(p))|k, σ〉
= N(p)U(Lc(Λp))U

−1(Lc(Λp))U(ΛLc(p))|k, σ〉 (2.4)

= N(p)U(Lc(Λp))U(L−1c (Λp)ΛLc(p))|k, σ〉 (2.5)

The transformation U(L−1c (Λp)ΛLc(p)) changes the momentum of the state in
steps in the following way

k → p→ Λp→ k

i.e. it belongs to a subgroup of the Lorentz group that leaves the standard
momentum k invariant. This subgroup is called little group of transformations
W with

Wµ
νk

ν = kµ .

Now we can write Eq. (2.2) using the transformation U(W) on the state |k, σ〉
as

U(W)|k, σ〉 =
∑
σ′

Dσ′σ(W)|k, σ′〉
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where the Dσ′σ(W) are a representation of the little group (one can check the
group and representation axioms).

At this point let us also note that the states can be normalized according
to

〈k′, σ′|k, σ〉 = δ3(~k′ − ~k)δσ′σ (2.6)

i.e. the representation of the little group must be unitary:

D†(W) = D−1(W) .

Let us now take a closer look at the case of a massive particle (mass m such
that p2 = −m2 < 0 and p0 > 0), in which case the little group is the group of
three-dimensional rotations, SO(3). Unitary representations of this group can
be broken up into a direct sum of irreducible unitary representations associated

with a rotation R, D
(j)
σ′σ(R) of dimensionality 2j+ 1, j = 0, 12 , 1,

3
2 , 2, . . .. Going

back and inserting this into Eq. (2.2), the transformation property of a state
under a Lorentz transformation Λ now reads

U(Λ)|p, σ〉 =

√
(Λp)0

p0

∑
σ′

D
(j)
σ′σ(W(Λ, p))|Λp, σ′〉 (2.7)

where we have evaluated the normalization factor N in accord with the normal-
ization property Eq. (2.6). The Wigner rotation W in this equation is given
by

W(Λ, p) = L−1c (Λp)ΛLc(p) . (2.8)

2.2 Two-Body States and the Clebsch-Gordan
Coefficients of the Poincaré Group

Irreducible representations are characterized by mass and spin. When we think
about a particle in this way, it doesn’t matter whether it is elementary or
a bound state of other particles. Furthermore, the dynamical setup to get
the bound state doesn’t matter, either. We’ll now begin to construct a two-
body bound state via free (i.e. noninteracting) two-body states, then operators,
and then introduce interaction, which will lead us to the Bakamjian-Thomas
construction.

The first basic problem is the following: Consider a two-particle Hilbert
space as the tensor product of the corresponding single-particle spaces. Then
one has a basis, writing (e.g. for canonical spin, always denoted by the subscript

c)
|p1σ1p2σ2〉c := |p1σ1(j1)〉c ⊗ |p2σ2(j2)〉c (2.9)

normalized such that

c〈p′1σ′1p′2σ′2|p1σ1p2σ2〉c = δσ′1σ1δσ′2σ2δ
3(~p1

′ − ~p1)δ3(~p2′ − ~p2) (2.10)

The spin ji has been noted explicitly in the single-particle states above in ad-
dition to the spin projection σi, since this plays a role for the properties of the
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single-particle irreducible representations of the Poincaré group considered in
each case (we’ll see below, how the ji appear in the argument).

Now the question is how this two-particle state transforms under Poincaré
transformations and what the corresponding generators are. The Transforma-
tion is given by the tensor product of two single-particle representations as

U(Λ, a) := U1(Λ, a)⊗ U2(Λ, a) . (2.11)

Using this representation, the Poincaré generators are sums of the generators
for each particle

Pµ = Pµ1 ⊗ 12 + 11 ⊗ Pµ2 (2.12)

~K = ~K1 ⊗ 12 + 11 ⊗ ~K2 (2.13)

~J = ~J1 ⊗ 12 + 11 ⊗ ~J2 or shorter (2.14)

Jµν = Jµν1 ⊗ 12 + 11 ⊗ Jµν2 . (2.15)

Operators like the total mass and spin for the system (without interactions) can
be constructed via the definitions given earlier. However, they are in general
polynomials or other nonlinear functions in the generators and thus cannot be
written as the sum of their single-particle counterparts. We’ll make this more
explicit later.

One can/wants to use states to describe the system which are labeled by
a total momentum and a total spin. This would be natural in a situation
where one has no information as to whether the particle under investigation is
elementary or not. Only after the assumption of inner structure one can/has to
worry about constituents, their spins and their relative momentum. So the aim
in this respect is to find coefficients that link two-particle states to the states
with “total” quantum numbers. These are the Clebsch-Gordan coefficients of
the Poincaré group. More precisely, they are the coefficients between a tensor
product of two irreducible representations of the Poincaré group and a linear
superposition of irreducible representations of the Poincaré group (note that
this still describes noninteracting particles).

This is in analogy to the case of angular momentum in quantum mechanics,
where one is dealing with irreducible representations of the rotation group. For
spin s and projection ms one has

|(s1s2) sms〉 =

s1∑
ms1=−s1

s2∑
ms2=−s2

|s1ms1 s2ms2〉 Csmss1ms1s2ms2
, (2.16)

where the C are the corresponding Clebsch-Gordan coefficients.
So we want to express products of single-particle states as linear combina-

tions of two-particle states that have the same Poincaré-transformation prop-
erties as a single free particle. How do we get this?

First, identify eigenstates of the four-momentum operator: consider two
massive particles in a massive two-particle system. Furthermore, we will (al-
ways) use canonical spin. Then

Pµ|p1σ1p2σ2〉c = |p1σ1p2σ2〉c (pµ1 + pµ2 ) (2.17)
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from the construction of the total four-momentum operator in Eq. (2.12). Now
let us construct a state in the rest frame of the system via the canonical boost

L−1c (P ) := L−1c (
P√
P 2

) (2.18)

where the two notations in Eq. (2.18) are used synonymously. We get

|~k, σ1,−~k, σ2〉c = [Norm]1/2 U(L−1c (P ))
∑
σ′1σ
′
2

|p1σ′1p2σ′2〉c

× D
(j1)
σ′1σ1

(R−1c (L−1c (P ), p1)) D
(j2)
σ′2σ2

(R−1c (L−1c (P ), p2)) (2.19)

This is an eigenstate of Pµ with the eigenvalues

Pµ = (M0,~0) with M0 =

√
m2

1 + ~k 2 +

√
m2

2 + ~k 2 . (2.20)

Under rotations the rest-frame state transforms as

U(R)|~k, σ1,−~k, σ2〉c =
∑
σ′1σ
′
2

|−→Rk, σ′1,−
−→
Rk, σ′2〉c

× D
(j1)
σ′1σ1

(Rc(R, k1)) D
(j2)
σ′2σ2

(Rc(R, k2)) , (2.21)

where k1 = (

√
m2

1 + ~k 2,~k) and k2 = (

√
m2

2 + ~k 2,−~k).
Now remember that for canonical spin

Rc(R, k1) = Rc(R, k2) = R

and thus

U(R)|~k, σ1,−~k, σ2〉c =
∑
σ′1σ
′
2

|−→Rk, σ′1,−
−→
Rk, σ′2〉c

× D
(j1)
σ′1σ1

(R) D
(j2)
σ′2σ2

(R) . (2.22)

This result shows that all (three-) momenta and the spins projections in this
rest-frame state transform in the same way under a rotation, which is an ex-
tremely helpful property when constructing a total angular from spins and
orbital angular momenta.

With this construction we are now in the position to compute the Clebsch-
Gordan coefficients of the Poincaré group. In particular, this means to evaluate
the matrix elements of the rest-frame two-particle state just defined and the
single-particle state for the total system in its rest frame written as

|(m,~0), σ(j)〉c (2.23)

and then use boosts to connect everything to non-rest-frame states. The “total”
state transforms under rotations as

U(R) |(m,~0), σ(j)〉c =
∑
σ′

|(m,~0), σ′(j)〉c D(j)
σ′σ(R) . (2.24)

The steps in the calculation are the following:
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• Use an expansion in spherical harmonics to relate Eq. (2.19) to Eq. (2.23)
via the Clebsch-Gordan coefficients of the rotation group

• Use a canonical boost to bring the total state to its “normal” form with
total momentum P

• Use the canonical boost relation in Eq. (2.19) to relate the two-particle
rest-frame state to the tensor-product momentum state for two particles

Then, one can put it all together, including proper normalization factors, to get
an expression for the inner product

c〈p1σ1p2σ2|Pσ(j)〉c , (2.25)

which is the desired Clebsch-Gordan coefficient of the Poincaré group.

2.3 The Method of Induced Representations

Assume we have a representation of the little group such as the one found above.
Considering massive particles we have the transformation property under a
rotation R, using canonical spin and boosts,

U(R)|k, σ〉c =

j∑
σ′=−j

D
(j)
σ′σ(R)|k, σ′〉c . (2.26)

Now, we’ll illustrate how one can get the transformation property of any state
|p, σ〉c under any Poincaré transformation U(Λ, a). First, note that |p, σ〉c is
constructed via a canonical boost as

U(Lc(p))|k, σ〉c = f × |p, σ〉c .

The factor f can be determined from the normalization condition for the states,
Eq. (2.6), and from the fact that U(L) must be unitary as

f =

(√
m2 + ~p 2

m

)1/2

× a phase

Next, note that we already established the action of a translation on a state
|p, σ〉c above in Eq. (2.1). These relations together with the group properties
fix the action of U(Λ, a). In particular, for a given combination p, Λ, a, one can
uniquely represent U(Λ, a) as

U(Λ, a) = U(1, a)U(Lc(Λp))U(Rc(Λ, p))U(L−1c (p)) . (2.27)

In other words, the steps are

• Inverse boost of general state to its rest frame

• Wigner rotate according to (Λ, p)
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• Boost to the frame with momentum Λp

• Translate

In this way one obtains a single-valued unitary representation of the Poincaré
group, since all steps are unitary. The details in every step can be collected to
evaluate U(Λ, a) explicitly in terms of matrix elements between states |p, σ〉c.

2.4 ISL(2,C) and the Poincaré group

ISL(2,C), the inhomogeneous extension of SL(2,C) is the covering group of
the Poincaré group. It is the group of ordered pairs (Λ, a) of complex 2 × 2
matrices Λ and a with |Λ| = 1 and a† = a. A Minkowski four vector xµ can
in this context be written as a complex 2 × 2 matrix X whose determinant is
exactly equal to xµxµ:

xµ → X := xµσµ =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
and xµ =

1

2
Tr(σµX) . (2.28)

Here σµ = (1, ~σ), with the Pauli matrices ~σ. In their standard representation
these are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
, (2.29)

and, together with 1 form a basis for the space of complex 2× 2 matrices.
An element Λ of the Lorentz group is written as an SL(2,C) element with

determinant 1, so the determinant of the transformed matrix (which corre-
sponds to the scalar product of the corresponding four vector in Minkowski
space) is invariant under the Lorentz transformation X → X′ = ΛXΛ†, as one
can easily see.

Let us now consider the form of specific Lorentz transformations in this
context. The first instructive example is a boost in z-direction, which turns out
to simply read:

Λ(Lz) =

(
eα/2 0

0 e−α/2

)
. (2.30)

If we look at general rotationless boosts, we can write the element of SL(2,C)
corresponding to a boost L as a hermitian matrix HL of the form

HL = cosh(ω/2)σ0 +

3∑
k=1

sinh(ω/2)nkσ
k = e(ω/2)~n·~σ , (2.31)

where the unit vector ~n and ω define the direction and rapidity of the boost,
respectively. Note that ~n is real and ω is positive, with ~v

c = tanh(ω)~n.
In a similar way, one can write a rotation R around a real axis ~n through

an angle ϕ ∈ [0, 4π) by the unitary matrix UR of the form

UR = cos(ϕ/2)σ0 − i
3∑

k=1

sin(ϕ/2)nkσ
k = e−i(ϕ/2)~n·~σ . (2.32)
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With these two relations, any Lorentz transformation can be written as an
element of SL(2,C), because it can be decomposed into a pure boost and a pure
rotation (this is often referred to in this context as the decomposition theorem).
An analogous decomposition law is valid for the SL(2,C) elements: The polar
decomposition theorem states that any element of SL(2,C) can be written as a
product of a hermitian and a unitary part.

Given an element A of SL(2,C), the corresponding Lorentz transformation
Λµν can be constructed by

Λµν =
1

2
Tr(σ̄µAσνA

†) (2.33)

with σ̄µ = (1,−~σ).

2.5 The massless case

For the above arguments we frequently used the explicit assumption that the
particle(s) under consideration have nonzero rest mass. While this is (of course)
not generally true, the structure of the arguments mostly remains, which is why
it was both concrete and generally instructive. Now only a few modifications
and additional arguments are necessary to discuss the case of a massless particle.
More precisely, we are immediately interested in the little group for this case.

The starting point is analogous to the massive case, namely analogous to
Eq. (2.3)

pµ = Lµf νk
ν , (2.34)

which is used to define the transformation from an arbitrary momentum p to
a standard momentum k, but now for a massless particle. With the four-
momentum of a massless particle being timelike, the usual choice for the stan-
dard momentum is

kµ = (p, 0, 0,p) (2.35)

where the z-direction has been chosen without loss of generality. Now one can
ask, which elements of the Poincaré group leave such a four-vector invariant.
One finds that the little group in this case is E(2), the Euclidean group in two
dimensions. It contains two-dimensional translations as well as rotations in two
dimensions (i. e. around a single real angle ϑ) as well as combinations thereof.
More precisely, in general one has either a translation followed by a rotation or
the other way round.

Going back to the SL(2,C) picture, one can parameterize an element of
E(2) as

e2(ϑ, a) =

(
eiϑ/2 a eiϑ/2

0 e−iϑ/2

)
(2.36)

with the real rotation angle ϑ and the complex constant a responsible for the
translations in two dimensions.

For the following discussion it is instructive to define a special set of coor-
dinates (light-front coordinates):

x+ := x0 + x3 and x− := x0 − x3 , (2.37)
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the others x1 and x2 are unchanged and are usually denoted as ~x⊥ := (x1, x2)
or x⊥ := x1 + ix2, the latter of which is used below.

In particular, writing the standard momentum of Eq. (2.35) as an element
of SL(2,C), one obtains the matrix

H(k) =

(
k+ k∗⊥
k⊥ k−

)
=

(
2p 0
0 0

)
. (2.38)

With the transformation rules defined above one obtains via the parametriza-
tion in Eq. (2.36) and using the general expression in Eq. (2.38) first, one has

e2(ϑ, a) H(k) e†2(ϑ, a) =

(
k+ + |a|2k− + ak⊥ + a∗k∗⊥ (k∗⊥ + ak−)eiϑ

(k⊥ + a∗k−)e−iϑ k−

)
,

(2.39)
from which one sees immediately that this indeed satisfies the requirements of
a little-group element for the standard momentum. The next question is what
the form of L in Eq. (2.35) is. The answer to this question is provided by a
front-form boost, in the case of (2.35) given by

Lf (p) =

√p+
2p 0

p⊥√
2p+p

√
2p
p+

 (2.40)

Starting from the right-hand side in (2.35) one can show that the transformation
via Lf yields the general lightlike momentum p.

In terms of the representations of general Poincaré transformations for the
massless case one finds that any element A of SL(2,C) can be decomposed into
a front form boost and an element of E(2) so that one has

A = Lf (p) e2(ϑ, a) . (2.41)

Concluding remarks of this section concern the form of the Lorentz genera-
tors: one obtains Jµν using light-front components as

Jµν =


0 (K1 + J2) (K2 − J1) −K3

−(K1 + J2) 0 J3 −(K1 − J2)
−(K2 − J1) −J3 0 −(K2 + J1)

K3 (K1 − J2) (K2 + J1) 0

 . (2.42)

Then we can define

Jµν =:


0 E1 E2 −K3

−E1 0 J3 −F1

−E2 −J3 0 −F2

K3 F1 F2 0

 . (2.43)

This means the following replacements:

F1 = (K1 − J2) E1 = (K1 + J2)

F2 = (K2 + J1) E2 = (K2 − J1)
(2.44)

With these definitions and the usual Poincaré commutation relations one arrives
at the a set of commutation relations for the light-front generators E and F
with the other generators.
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2.6 Covariant Two-Fermion States

Quarks, e. g., are fermions; more precisely, they are spin-1/2 particles. Rel-
ativistically, this requires treatment of the quark spin degree of freedom via
Dirac four-component spinors. In such context, e. g., a qq̄ state is represented
by an outer product of two of these four-component objects, i. e., by a 4 × 4
matrix. A basis for these matrices is a set of matrices constructed with the help
of the Dirac γ matrices.

The Dirac matrices themselves are widely used and known. Still, their basic
properties and those of the Dirac spinors are reviewed by some of the exercises
at the end of this chapter.

From the point of view of the Lorentz group we are talking about represen-
tations once again. The generator of Lorentz transformations Jµν appears in
the representation D(Λ) of an infinitesimal Lorentz transformation given by

D(Λ) = 1 +
i

2
ωµνJ

µν (2.45)

where ω is infinitesimal. Furthermore, remember the commutation relations of
the components of Jµν , Eq. (1.5):

i [Jµν , Jρσ] = gνρJµσ − gµρJνσ − gσµJρν + gσνJρµ (2.46)

Now, let γµ be a set of matrices with the anticommutation relations

{γµ, γν} = 2 gµν 1 (2.47)

which is the well-known Clifford algebra. Then we define

Jµν = − i
4

[γµ, γν ] , (2.48)

and find that this construction satisfies Eq. (2.46). Furthermore, one gets the
relation

[Jµν , γρ] = −iγµgνρ + iγνgµρ . (2.49)

This means that γρ transforms like a four-vector under Lorentz transforma-
tions. Next, let’s have a closer look at the Lorentz-transformation properties
of products of γ matrices. We have just seen that γµ transforms like a vector
under Lorentz transformations, i.e.

D(Λ)γµD−1(Λ) = Λν
µγν . (2.50)

In the same way, the 4× 4 unit matrix 1 transforms like a scalar, namely

D(Λ)1D−1(Λ) = 1 . (2.51)

Furthermore, via writing Jµν = − i
4 [γµ, γν ] it is clear that Jµν is an antisym-

metric tensor of rank two:

D(Λ)JµνD−1(Λ) = Λρ
µΛσ

νJρσ . (2.52)
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One can now use the γµ to construct further antisymmetric tensors of higher
rank:

Aρστ := γ[ργσγτ ] (2.53)

which is a short-hand notation for the sum over all permutations of the indices
within the brackets with a plus or minus sign for even or odd permutations,
respectively. Written out explicitly, this means

Aρστ = γργσγτ − γργτγσ
+ γτγργσ − γτγσγρ
+ γσγτγρ − γσγργτ (2.54)

The next rank is covered by

Bµνρσ := γ[µγνγργσ] . (2.55)

In this way one can construct tensors of any rank. This set of antisymmetric
tensors forms a basis for all matrices that can be constructed from the Dirac
matrices. The reason is that for any product of γs one can find a form of a sum
of such antisymmetric tensors times metric tensors via the γ’s anticommutation
relation.

At this point, let us investigate the matrix β := iγ0 and its action on the γ
matrices. Since β−1 = −iγ0, it follows that

βγiβ−1 = −γi (2.56)

βγ0β−1 = γ0 (2.57)

This means that β acts on the γs like a parity transformation. On a product
of γs, this yields exactly one minus sign for every spatial γ component. In
particular,

βJ ijβ−1 = J ij (2.58)

βJ i0β−1 = −J i0 (2.59)

Let us now return to the question of finding a basis for a 2-fermion state.
So far in the discussion about the γ matrices we have not made any assumption
about the number of space-time dimensions or the metric. So let us consider 4
space-time dimensions (for obvious reasons). Then, one needs only the following
basis of antisymmetric tensors, and the unit matrix:

1, γµ, Jµν , Aρστ , Bµνρσ . (2.60)

This set is linearly independent: they all transform differently under the Lorentz
group, i.e. proper Lorentz and/or parity transformations. The scalar product
for the corresponding orthogonality relation is given by matrix multiplication
and subsequently taking the trace of the result. The reason for not needing more
than these matrices is the number of Dirac matrices in four dimensions, namely
four: γ0, γ1, γ2, γ3. This means that any product of five or more matrices of
this kind has at least two matrices with the same index. Via Eq. (2.47) such a
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product can be changed by anticommuting γs until those with the same index
are next to each other and one has (γµ)2 = 1 for any value of µ, which, step by
step, eventually reduces the number of γ matrices in the product to ≤ 4.

Now let’s consider the above basis in more detail. The terms A and B
can be written in simpler form: Bµνρσ is totally antisymmetric, i.e. it must be
proportional to the Levi-Civita symbol in four dimensions and one can write

Bµνρσ = i 4!γ5ε
µνρσ (2.61)

with the definition of γ5 = −iγ0γ1γ2γ3. Similarly, for Aρστ one finds

Aµνρ = i 3!γ5ε
µνρσγσ . (2.62)

γ5 is a pseudoscalar, i.e. it transforms like a scalar under Lorentz transforma-
tions and gets a minus sign from a parity transform. More precisely,

[Jµν , γ5] = 0 (2.63)

βγ5β
−1 = −γ5 (2.64)

In the same way, γ5γ
µ is an axial- (or pseudo-) vector. One can easily check

that γ25 = 1 and {γµ, γ5} = 0.
Now let us count the independent components of the tensors in the basis

above. A totally antisymmetric tensor with n indices in d dimensions has
d!

n!(d−n)! independent components, so we have 1+4+6+4+1 = 16 components,
which coincides with the number of independent components of an arbitrary
4 × 4 matrix. So we take Dirac matrices of dimension 4; this also means that
they are irreducible with respect to the Lorentz group.

At this point, two more remarks are in order. First, note that the γ-matrix
form for Jµν is also written as

σµν :=
i

2
[γµ, γν ] . (2.65)

Finally, we note that the C-parity transformation in the standard representation
for the γ matrices is given by

C := −iγ2γ0 , C−1 = −C ,

and an additional transposition of the corresponding matrix is needed so that,
e.g.,

CγµC−1 = −(γµ)T (2.66)

where the superscript T denotes matrix transposition.
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2.7 Exercises

Exercise 2.1 Consider a massive particle and the Wigner rotations defined via
Eq. (2.8). With the help of the definition of a canonical boost Lc, show
that, if Λ is itself a rotation R, then W(R, p) is independent of p, more
precisely, the Wigner rotation associated with a rotation is the rotation
itself: W(R, p) = R.

Exercise 2.2 Consider the following construction of a few-body state (velocity
state) which starts from a few-particle momentum state in its rest frame:

|v,~k1, σ1,~k2, σ2, . . . ,~kn, σn〉 := U(Lc(v))|k1, σ1, k2, σ2, . . . , kn, σn〉 (2.67)

where v is the total four-velocity of the system and the ki are rest-frame
momenta of the particles defined with respect to the individual particle
momenta pi via Lc(v)ki = pi. They are considered on-shell and satisfy∑n

i=1
~ki = 0 (only n− 1 of them are linearly independent).

Investigate the Lorentz-transformation properties of a velocity state under
U(Λ) and show that all internal variables (~ki, σi) are transformed by the
same rotation.

Exercise 2.3 Consider the complex 2 × 2 representations of four-vectors via
the Pauli matrices appearing in Eq. (2.29). Without resorting to the
concrete representation of the σi consider two four-vectors aµ and bµ and
their matrix counterparts A and B.

(a) Show that

2Tr[AB] = Tr[A]Tr[B] + Tr[~σA] · Tr[~σB]

(b) Express Det[A] in terms of Tr[A] and Tr[A2]

(c) What are the components of bµ for B = A−1?

Exercise 2.4 Consider Eq. (2.28) and the light-front coordinates defined also
above in (2.37):

x+ := x0 + x3 and x− := x0 − x3 ,

with x1 and x2 unchanged.

(a) Compute the form of the scalar product of a four-vector xµ with
itself as a function of these coordinates.

(b) Show that in these coordinates, a boost of xµ in z-direction is given
by simple scale transformations of the coordinates.

(c) Consider further the SL(2,C) matrix representation of a front-form
boost as given in Eq. (2.40) Show that ΛLf maps the light front
x+ = 0 back onto itself.

(d) Show furthermore that transformation of the lightlike standard vec-
tor in Eq. (2.35) by a front form boost yields a general lightlike
momentum p.
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(e) From the SL(2,C) matrix representation of a front-form boost, con-
struct its SO(1, 3) representation.

Exercise 2.5 Properies of the Dirac matrices are essentially based on the Clif-
ford algebra (2.47). The “Feynman-slash” short-hand notation /a stands
for γµaµ.

(a) Show that

• /a/b = a · b 1− iσµνaµbν
• γνγµγν = −2γµ

• γ%γµγνγ% = 4gµν 1

(b) Prove the (Dirac-)trace identities

• Tr[any product of an odd number of γ matrices] = 0

• Tr[σµν ] = 0

• Tr[γµγν ] = 4gµν

(c) In the Dirac representation the matrices are given by:

γ0D =

(
1 0
0 −1

)
and γiD =

(
0 σi

−σi 0

)
(2.68)

In the chiral representation one has, on the other hand:

γ0χ =

(
0 1
1 0

)
and γiχ =

(
0 σi

−σi 0

)
(2.69)

Show that the Matrix U relating these two representations via γµχ =
UγµDU

† is given by

U =
1√
2

(1− γ5γ0) =
1√
2

(
1 −1
1 1

)
(d) Compute γ5 in both representations

Exercise 2.6 Prove that the construction Eq. (2.48) indeed satisfies the com-
mutation relations

(a) Eq. (2.46),

(b) Eq. (2.49), and

(c) Eq. (2.63).
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Achievement

After studying this section and performing the exercises the reader should be
able and feel confident to do the following:

• Understand and apply Lorentz- and Poincaré transformations at the level
of one and few-body states

• Understand the meaning and context of the little group for a particular
representation of the Poincaré group

• Understand the idea of the method of induced representations

• Understand the concept of a Wigner rotation

• Know and be able to use the relation between Poincaré transformations
and their SL(2,C)-couterparts

• Be able to make sense of light-front coordinates

• Deal with fermion states and Pauli as well as Dirac matrices

37



Chapter 3

The Bethe-Salpeter Equation

The Bethe-Salpeter equation (BSE) is an integral equation to study a quantum
field theoretical 2-body system with regard to possible bound states as well as
to scattering solutions. It is the relativistic analog of the Lippmann-Schwinger
equation in quantum mechanics. Historically it has its name from Bethe and
Salpeter, who presented the equation at a meeting of the American Physical
Society in 1951 and did their work in an approach using Feynman graphs. How-
ever, the equation appeared from many different directions and was investigated
by various people, in particular: Nambu (1950; position-space differential equa-
tion in ladder truncation), Gell-Mann and Low (1951; field theory), Schwinger
(1951; functional formalism), Hayashi and Munakata (1952, presented earlier
in 1950 at meetings of the Japanese Physical Society; Feynman graphs), Kita
(1952; S-matrix theory), and Mandelstam (1955; energy-plane analyticity).

While some of the above derivations have (at least partly) a perturbative
character, the equation is nonperturbative. This is important, since bound
states should not be accessible in perturbation theory. This can be understood
in the naive picture of scattering in perturbation theory: the longer two particles
interact, the more often they can exchange quanta. For a bound state, this
“interaction duration” approaches infinity. Still, since Feynman graphs are
both instructive and intuitive, they are used below to motivate the BSE.

3.1 The Two-Fermion Four-Point Green Function and
the BSE

Assume that we have two distinct fermions interacting with each other, de-
scribed by fermion operators ψ(1)(x), ψ(2)(x). We represent the two-fermion
connected Green function G(x1, x2;x

′
1, x
′
2) by the diagram in Fig. 3.1 It is given

by the expression

G(x1, x2;x
′
1, x
′
2) =

〈0|T [ψ(1)(x1)ψ(2)(x2)ψ̄(1)(x
′
1)ψ̄(2)(x

′
2)]|0〉

〈0|U |0〉 (3.1)

This is written in the interaction picture, where the Lagrangian density of
the system is written as L(x) = L0(x) + LI(x) and LI(x) is the interaction
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G

x1 x′
1

x2 x′
2

Figure 3.1: The two-fermion four-point Green function

Lagrangian density. The operator U stands for the Dyson series

U = T

[
exp(i

∫
d4x LI(x))

]
, (3.2)

T is the time-ordering operator, |0〉 the vacuum state, and the denominator
〈0|U |0〉 contains (and eliminates from G) all unconnected parts of the Green
function (“vacuum bubbles”). The Green function G describes the “propaga-
tion” of the two-particle system in spacetime.

Furthermore, we need the fermion propagator S(1),(2)(x, x
′) (in pictorial no-

tation represented as ), which is given by

S(j)(x, x
′) =

〈0|T [ψ(j)(x)ψ̄(j)(x
′)]|0〉

〈0|U |0〉 (3.3)

analogous to G above.
Furthermore, we need to distinguish reducible and irreducible diagrams to

build an interaction kernel that doesn’t result in double-counting. A diagram
in our present context is called reducible, if one can cut the diagram apart by
cutting the two fermion (solid) lines once inside the diagram and none of the
boson (dashed) lines. In Fig. 3.2 diagrams 2, 4, 6, 7, and 8 are reducible, the

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 3.2: Reducible and irreducible interaction terms in the BSE for the
two-fermion four-point Green function

others irreducible. The irreducible ones constitute the irreducible interaction
kernel, iteration of which will reproduce all diagrams including the reducible
ones.
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In this way, the BSE for G becomes a sum of kernel iterations depicted in
Fig. 3.3 which can be summed up completely to yield the BSE for G given in

G = + +K K K + . . .

Figure 3.3: Iteration of the irreducible interaction kernel towards the BSE for
the two-fermion four-point Green function

Fig. 3.4 and written as an inhomogeneous linear integral equation in Eq. (3.4)
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Figure 3.4: The BSE for the two-fermion four-point Green function

G(x1, x2;x
′
1, x
′
2) = −S(1)(x1, x′1)S(2)(x2, x′2) + i

∫
d4y1 d

4y2 d
4y′1 d

4y′2

×S(1)(x1, y1)S(2)(x2, y2) K(y1, y2; y
′
1, y
′
2) G(y′1, y

′
2;x
′
1, x
′
2) (3.4)

In the following we will write G and S in terms of matrix elements of Heisenberg
operators ψH(j)(x):

G(x1, x2;x
′
1, x
′
2) = 〈0|T [ψH(1)(x1)ψ

H
(2)(x2)ψ̄

H
(1)(x

′
1)ψ̄

H
(2)(x

′
2)]|0〉 (3.5)

S(j)(x, x
′) = 〈0|T [ψH(j)(x)ψ̄H(j)(x

′)]|0〉 (3.6)

3.2 Momentum Space

For actual calculations, it is more convenient to work in momentum space.
Therefore we now rewrite the BSE to momentum space. The first step is to
define relative coordinates x := x1 − x2 and x′ := x′1 − x′2. This is a good
choice due to the translational-invariance requirement put on the theory. The
definition of a “center of mass” is arbitrary. One may chooseX := ηx1+(1−η)x2
and analogously X := ηx′1 + (1 − η)x′2; this means x1 = X + (1 − η)x and
x2 = X − ηx. The conjugate field momenta are, via Fourier transformation,
translational invariance and total-momentum conservation,

p = (1− η)p1 − ηp2 (3.7)

P = p1 + p2 and (3.8)

p1 = ηP + p (3.9)

p2 = (1− η)P − p (3.10)
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P is the total momentum of the two fermions, p their relative momentum, and
pj their individual momenta. The Fourier transformed quantities in the BSE
can be obtained via the relations

G(x1, x2;x
′
1, x
′
2) =

1

(2π)8

∫
d4P d4q d4q′ e−iP ·(X−X

′)−iq·x+iq′·x′G(P ; q; q′)

K(x1, x2;x
′
1, x
′
2) =

1

(2π)8

∫
d4P d4q d4q′ e−iP ·(X−X

′)−iq·x+iq′·x′K(P ; q; q′)

S(j)(xj , x
′
j) =

1

(2π)4

∫
d4pj e

−ipj ·(xj−x′j)S(j)(pj)

The BSE becomes

G(P ; q; q′) = −S(1)(ηP + q)S(2)((1− η)P − q) δ4(q − q′)

+iS(1)(ηP + q)S(2)((1− η)P − q)
∫
d4q′′ K(P ; q; q′′) G(P ; q′′; q′) (3.11)

This completes the discussion of the Bethe-Salpeter equation for the two-fermion
four-point Green function.

3.3 The Homogeneous BSE

We now approach the problem of finding a bound state for a given system
of two particles. In the following, we will start from the 4-point Green func-
tion of Eq. (3.5) and investigate what it means to find a bound state solution,
which leads to the definition of an amplitude (corresponding to a wave function
in quantum mechanics except for the missing probability interpretation), the
Bethe-Salpeter amplitude. Once this object is defined and translated to mo-
mentum space, we’ll find the homogeneous BSE that this amplitude satisfies,
which is commonly used to study bound states in quantum field theory.

We start from G as given in Eq. (3.5) and let x01, x
0
2 > x01

′, x02
′. Then one

can split the time-ordered product in the definition of G and write

G(x1, x2;x
′
1, x
′
2) = 〈0|T [ψH(1)(x1)ψ

H
(2)(x2)]T [ψ̄H(1)(x

′
1)ψ̄

H
(2)(x

′
2)]|0〉 (3.12)

(we’ll drop the superscript H in the following for simplicity); this assumption is
reasonable, if one wants to have an intermediate state of two fermions. Now we
insert a complete set of states |P, α〉 with P the total momentum of the state
and α all other quantum numbers. Then we get (for degenerate states, one has
to also sum over the degeneracy)

G(x1, x2;x
′
1, x
′
2) =

∑
P,α

〈0|T [ψH(1)(x1)ψ
H
(2)(x2)]|P, α〉〈P, α|T [ψ̄H(1)(x

′
1)ψ̄

H
(2)(x

′
2)]|0〉

(3.13)
The contribution from a particular bound state B is∑

P

〈0|T [ψH(1)(x1)ψ
H
(2)(x2)]|P, αB〉〈P, αB|T [ψ̄H(1)(x

′
1)ψ̄

H
(2)(x

′
2)]|0〉 (3.14)
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where, since the on-mass-shell condition P 2 = M2 holds for the bound state
with mass M , the sum over momentum states can be written as the integral
over the mass shell in momentum space in the form∑

P

. . . =

∫
d4P ϑ(P0)δ(P

2 −M2) . . . (3.15)

Now define an amplitude, which is, somewhat misleadingly, called the Bethe-
Salpeter wave function as the following matrix element

χB(x1, x2) := 〈0|T [ψH(1)(x1)ψ
H
(2)(x2)]|P, αB〉 (3.16)

and its conjugate as

χ̄B(x1, x2) := −〈P, αB|T [ψ̄H(1)(x
′
1)ψ̄

H
(2)(x

′
2)]|0〉 (3.17)

With the previous definitions of X and x and with the transformation properties
of the field operators ψ(x) under translations this becomes

χB(x1, x2) =: χB(P ;x)e−iP ·X (3.18)

χ̄B(x
(
1
′), x

(
2
′)) =: χ̄B(P ;x(′))eiP ·X

(′)
(3.19)

The corresponding momentum-space objects are obtained via

χB(P ;x) =

∫
d4q χB(P ; q)e−iq·x (3.20)

χ̄B(P ;x(′)) =

∫
d4q χ̄B(P ; q)eiq·x

(′)
(3.21)

Now putting all this together into the expression for GB one has after Fourier
transformation

G(P ; q; q′) = −i [χB(P ; q)χ̄B(P ; q′)]|P on shell
P 2 −M2

+ terms regular in P 2 (3.22)

where “P on shell” means P 2 = M2 and P0 ≥ 0. Now we insert this into
the integral equation for G, Eq. (3.11), and compare the residues at the pole
P 2 = M2, i.e., we multiply the equation by (P 2−M2) and afterwards take the
limit P 2 →M2. This immediately yields

χB(P ; q) = iS(1)(ηP + q) S(2)((1− η)P − q)
∫
d4q′ K(P ; q; q′) χB(P ; q′) (3.23)

The diagrammatical representation of this equation is given in Fig. 3.5. Multiplying
by S−1(1)(ηP + q) S−1(2)((1− η)P − q) and setting

χB(P ; q) =: S(1)(ηP + q) ΓB(P ; q) S(2)((1− η)P − q) (3.24)

one obtains the homogeneous BSE for the Bethe-Salpeter amplitude ΓB(P ; q)

ΓB(P ; q) = i

∫
d4q′ K(P ; q; q′) S(1)(ηP +q′)ΓB(P ; q′)S(2)((1−η)P −q′) (3.25)
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Figure 3.5: The homogeneous BSE for the Bethe-Salpeter wave function χB

K
S

S

ΓB

=

ΓB

Figure 3.6: The homogeneous BSE for the Bethe-Salpeter amplitude ΓB

In diagrammatical representation, this equation is given in Fig. 3.6
At this point, a comment on fermion-(anti)fermion systems is in order: in

this case the propagators S and the amplitudes χ and Γ are represented by
4×4-matrices in Dirac space. This can be made explicit by adding Dirac indices
(we’ll use a, b, c, . . . in the following) to the equations, e. g., the homogeneous
BSE for Γ in (3.25):

[Γ(P ; q)]ab = i

∫
d4q′ [K(P ; q; q′)]cdab [χ(P ; q′)]cd (3.26)

and for (3.24)

[χ(P ; q)]ab =: [S(1)(ηP + q)]ac[Γ(P ; q)]cd[S(2)((1− η)P − q)]db . (3.27)

In general, these indices can be omitted if one takes care to put the terms in an
expression in the correct order as one would need them for the implied (Dirac)
matrix multiplications. While we omit explicit Dirac indices in the derivation
of the canonical normalization condition below for more clarity, it should be
noted that the order is not kept and only given explicitly at the very end of the
next section.

3.4 The Canonical Normalization Condition

Equations (3.23) and (3.25) are homogeneous, linear integral equations. The
solution in each case is only determined up to a constant normalization factor.
The corresponding normalization condition is derived from the inhomogeneous
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BSE for G; the associated norm is referred to as the canonical norm of the am-
plitude. Such a condition can be derived for both χB and ΓB. We’ll concentrate
on the former.

First, rewrite the integral equation for G using the notation

D(P ; q; q′) := δ4(q − q′)
[
S(1)(ηP + q) S(2)((1− η)P − q)

]−1
(3.28)

and without writing arguments. Then one has

DG = 1 + iKG . (3.29)

Formally, the solution of this equation is

(D − iK)G = 1 ⇒ G = (D − iK)−1 . (3.30)

With the help of the relation

∂

∂λ
A−1 = −A−1

(
∂

∂λ
A

)
A−1

which is valid for any invertible operator A, one can get the following relation
by differentiating the above expression for G by λ, which we’ll later replace by
Pµ:

∂

∂λ
G = −(D − iK)−1

[
∂

∂λ
D − i ∂

∂λ
K

]
(D − iK)−1

= −G
[
∂

∂λ
D − i ∂

∂λ
K

]
G . (3.31)

Now again, we use pole terms for G and equate the corresponding residues.
This yields

iχ̄B

[
∂

∂λ
D − i ∂

∂λ
K

]
χB =

∂(M2)

∂λ
(3.32)

Now we replace λ→ Pµ and write everything explicitly with momentum-space
arguments as the canonical normalization condition for χB:

2Pµ = i

∫
d4q χ̄B(P ; q)

[
∂

∂Pµ
(
S(1)(ηP + q) S(2)((1− η)P − q)

)−1]
χB(P ; q)

+

∫
d4q d4q′ χ̄B(P ; q)

[
∂

∂Pµ
K(P ; q; q′)

]
χB(P ; q) (3.33)

An analogous condition exists for ΓB(P ; q), which can be easily derived from
Eq. (3.33). One can see that there are two terms; one involving a derivative of
(the inverse of) the propagators S(1) and S(2) and another involving a derivative
of the kernel K with respect to the total momentum. In a simple enough
interaction, it is possible that the kernel doesn’t depend on the total momentum
and only the first term remains nonzero.

To make the case of two fermion constituents clearer once again, we repeat
the normalization condition here and put all terms in the correct order with
respect to matrix multiplication in Dirac space. In this case, the calculation
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also involves the Dirac trace over the expressions on the right hand side of
Eq. (3.33) and one obtains, writing q+ := ηP + q and q− := (1− η)P − q

2Pµ = iTr

[∫
d4q χ̄(P ; q)

∂S−1(1)(q+)

∂Pµ
χB(P ; q)S−1(2)(q−)

]

+ iTr

[∫
d4q χ̄(P ; q) S−1(1)(q+)χB(P ; q)

∂S−1(2)(q−)

∂Pµ

]

+ Tr

[∫
d4q d4q′ χ̄B(P ; q)

∂K(P ; q; q′)

∂Pµ
χB(P ; q)

]
(3.34)

3.5 The Inhomogeneous Vertex BSE

In a quantum field theory one can also investigate the properties of general ver-
tices (three-point Green functions). As an example we write a vertex Γx(P ; q)
where the subscript x is there to remind us that this object is restricted to cer-
tain properties (quantum numbers). These vertex functions in an interacting
theory satisfy an inhomogeneous BSE analogous to the homogeneous BSE for
Γ. It reads, e.g.,

Γx(P ; q) = iΓ0
x +

∫
d4q′ K(P ; q; q′) S(1)(ηP + q′)Γx(P ; q′)S(2)((1− η)P − q′)

(3.35)
In diagrammatical representation, this equation is given in Fig. 3.7. The in-

= K
S

S

ΓBΓB

+

Figure 3.7: The inhomogeneous BSE for the vertex function Γx

homogeneous term here essentially represents the corresponding current before
the interactions of the theory. We will discuss possible solution strategies for
this and the homogeneous BSE for Γ later. At this point it is interesting to note
that, similar to the 4-point function G, the pseudoscalar vertex has a pole at a
bound state’s mass of the system, but only if this bound state has the quantum
numbers specified by x. G on the other hand contains poles of all kinds and
quantum numbers. The pole structure in the case here can be written as

Γx(P ; q)|P 2∼=M2
ps

=
rx

P 2 −M2
x

ΓBx (P ; q) + regular terms at this pole (3.36)

where Mx is the pseudoscalar bound state’s mass and ΓBx (P ; q) canonically
normalized. Inserting this into the Eq. (3.35) and once more equating residues
yields the corresponding homogeneous BSE.
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3.6 Solution Strategies for the Homogeneous and the
Inhomogeneous BSEs

Both (vertex) BSE types, Eqs. (3.25) and (3.35) are integral equations of the
second Fredholm kind. More precisely, this means

• linear integral equation

• constant integration boundaries (Fredholm)

• solution appears both under the integral and outside (second kind)

In principle, analytic solutions are possible. In practice, e.g. in QCD, we can
essentially forget about that, which means that solutions will in general be
found numerically. While these notes do not deal with numerical methods at
all (please refer to the literature to learn about the numerical details of iterative,
inversion, or other methods), the basic ideas and strategies for a solution are
discussed in the following.

Γ

P2

P2=M
1

2 P2=M
2

2

Figure 3.8: The form of the solution of the inhomogeneous BSE for the pseu-
doscalar vertex function Γ5

Let’s start with the inhomogeneous BSE for Γx and analyze the solution
in terms of its dependence on the momentum variables involved. With two
independent four-momenta available, the total momentum P and the relative
momentum q, one has three Lorentz-invariant variables, which can be con-
structed as the Lorentz-scalar products obtainable from P and q, namely P 2,
q2, and q · P . In terms of finding a bound state’s mass M , it is interesting to
study the solution primarily as a function of P 2, since the solution will show
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a pole behavior at some P 2 = M2, as seen in Eq. (3.36). For this purpose,
one sets the other two variables to some particular values, e.g. q2 = q · P = 0
and obtains a function of P 2, whose pole structures can be easily spotted upon
inspection, see Fig. 3.8. To actually numerically find the solutions precisely
enough, it is not ideal to extract pole positions of Γx(P 2), but it is advisable
to investigate 1/Γx(P 2) and find zeros of this function. This procedure is il-
lustrated in Fig. 3.9. The pole with the smallest M corresponds to the ground

1/Γ

P2

P2=M
1

2 P2=M
2

2

Figure 3.9: Illustration of the solution strategy for the inhomogeneous BSE for
the pseudoscalar vertex function Γ5

state M1, the next to the first excited state with M2, etc. Note that both figures
depict the situation in Minkowski space; in Euclidean space, where a solution
is found at P 2 = −M2, the situation is mirrored with respect to the vertical
axis. Note furthermore that for a pole

Γ(P 2) =
r

P 2 −M2

one has
1

Γ(P 2)
=
P 2 −M2

r

and ∂
∂(P 2)

yields (
1

Γ

)′∣∣∣∣
(P 2=M2)

=
1

r
.

In this way, one can extract both the pole position and residue.
The equation as such can be solved by iterative methods. However, due

to the structure of the equation and due to the failure of the iterative method
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close to and beyond the first pole structure, a better way is to rewrite the
equation in the following way. Dropping all arguments, defining the formal
kernel K̃ := KS(1)S(2), and writing the driving term as D, Eq. (3.35) becomes

Γ = D + K̃ Γ . (3.37)

The formal solution of this equation is

Γ = (1− K̃)−1D (3.38)

which can be implemented numerically via matrix-inversion methods and pro-
vides a stable solution for all values of P 2.

Now, consider the homogeneous BSE, Eq. (3.25) and rewrite it formally
using the formal kernel K̃ once again as

Γ = K̃ Γ . (3.39)

The problem with this equation is that, in contrast to the inhomogeneous BSE,
where all three Lorentz-invariant variables are actually independent, the ho-
mogeneous equation is only valid on-shell i.e. P 2 = M2 is fixed a priori, but
actually an unknown parameter. In other words, to numerically find the so-
lution at P 2 = M2, one has to already know the value of M2. How can one
bypass this problem?

Upon closer inspection, Eq. (3.39) is an eigenvalue equation with an eigen-
value equal to one. As a result, the solution method can make use of the eigen-
value concept via the introduction of the artificial and P 2-dependent eigenvalue
λ(P 2) in the BSE to obtain

λ(P 2) Γ = K̃ Γ . (3.40)

Now, for any given value of P 2, one can solve this eigenvalue equation and
obtain a spectrum of eigenvalues λ1, λ2, . . . . Doing this for several values of
P 2 yields each λi as a function of P 2. Then the only step left is to find those
values of P 2, where λi(P

2) = 1 for each i and thereby obtain the bound-state
masses Mi of the system, which of course coincide with those found from the
corresponding inhomogeneous BSE. This procedure is illustrated in Fig. 3.10

Together with the mass M one also obtains the homogeneous BSA Γ, which
can be canonically normalized and subsequently used to compute further prop-
erties of the bound state, such as decay properties, various bound-state form
factors or couplings in various scattering processes.

In the following we will look at a concrete application of this formalism and
start with a discussion of mesons in the context of quantum chromodynamics
(QCD).

3.7 General Remarks on mesons

Mesons are not baryons. Nor are they leptons. Apart from the historical “in-
between” situation regarding baryon, meson, and lepton mass, this definition
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Figure 3.10: Illustration of the solution strategy for the homogeneous BSE

is still precise. Mesons have neither baryon nor lepton number. A conserved
quantity such as a “meson number” doesn’t seem to exist, i.e. neutral mesons
can be produced in high-energy experiments in large numbers. This high abun-
dance makes especially the very light pion a very interesting and important
object to study.

Mesons are hadrons, i.e. they are subject to the strong interaction. This
interaction is responsible for both the inner structure of hadrons as bound
states of quarks and gluons in the context of QCD as well as the interaction of
hadrons among each other (e.g. nucleon-nucleon interaction via pion exchange).

Mesons come in various kinds. With respect to the Casimir operators of
the Poincaré group we note that mesons have mass 6= 0 and integer spin
j = 0, 1, 2, . . .. Other than that, quark flavor is a key to the systematics of
the meson spectrum, which is implemented in the quark model. In its most
simple form, the quark model explains the quantum numbers of mesons (and
analogously baryons) via constructing a meson state out of a quark and an an-
tiquark, while a baryon is made out of three quarks. In this successful concept,
(anti)quarks carry charges ±2/3 or ±1/3 times the elementary charge, which
yields integer charges for both mesons and baryons. Furthermore, quarks carry
baryon number +1/3, antiquarks −1/3. For example, the up-quark u has charge
+2/3, the down-quark d −1/3, such that a proton p+ is given by the quark con-
tent uud, a neutron n0 by udd, and a positively charged pion π+ by ud̄. For
more information on flavors, a “complete” but ever-changing list of quark- and
meson- as well as baryon-properties, see the website and publications of the
Particle-Data Group at http://pdg.lbl.gov.
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On further notes, quarks (and gluons) cannot be observed individually,
i.e. no single quark or gluon has ever reached a detector. They occur only
inside hadrons, a property which is called confinement and is a result of the
underlying quantum field theory of the strong interaction, quantum chromody-
namics (QCD), which is a non-Abelian gauge theory. While the confinement
picture is modified under extreme conditions like high temperatures and/or den-
sities, for our purposes it makes sense to consider mesons as quark-antiquark
bound states in QCD via the Bethe-Salpeter equation. To do this, we have
to construct the Bethe-Salpeter amplitude as the bound-state amplitude of a
fermion-antifermion system. This is accomplished in the following.

3.8 Structure of the Meson BSA

Let us recall that a meson’s BSA Γ(P ; q) depends on two independent momenta,
namely the total momentum P and the relative momentum q of the meson’s
constituents. Together with the γ matrices discussed above one has three four-
vectors to build the amplitude: γµ, qµ, and Pµ. To understand the details
of the construction, we must characterize each meson by a set of quantum
numbers. We have JPC with the total angular momentum J , the parity P , and
the C-parity C, which is a parity quantum number for a state under charge
conjugation. Note that C is only a good quantum number, if the meson is a
bound state of equal-mass and flavor-antiflavor constituents (i.e. it is its own
antiparticle). In the general case of unequal constituent masses one therefore
has simply JP .

Now look at all possible scalar products of the three four-vectors just men-
tioned, but with the idea in mind that we would like to use them as basis
elements in Dirac space. We find that q2, P 2, γµγ

µ, and q · P are all propor-
tional to 1 in Dirac space, i.e., as soon as we have 1 as a basis element, we can
ignore these. The remaining possibilities are q · γ =: /q and P · γ =: /P . All of
these products are, of course, Lorentz scalar or pseudoscalar by construction.
In addition, we know that all vectors involved are actually polar vectors, so all
of these products are scalar and not pseudoscalar: they have parity +.

The next interesting quantity is C-parity. To investigate this, we have to
keep in mind that a charge conjugation inverts all internal quantum numbers,
including internal momenta (it corresponds to making an antiparticle out of a
particle). More precisely, e.g. charge and flavor are inverted, but also the rela-
tive (internal) momentum q → −q. However, the total momentum P remains
unchanged. The charge conjugation of an amplitude Γ is denoted by a bar over
the Γ and given by the following prescription

Γ(P ; q) −→ Γ̄(P ; q) =
(
C Γ(P ;−q) C−1

)T
(3.41)

In this way and with Eq. (2.66) we find that 1 and /q have positive C-parity,
while /P has negative C-parity. With this information we can now investigate
and analyze the properties of any amplitude, best by example.

For the sake of simplicity let us start with a meson with spin zero, i.e.
J = 0. There are two possibilities for parity, which make the meson either
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a scalar (positive parity) or a pseudoscalar (negative parity). We begin with
scalars and ask ourselves the question, what possibilities there are to construct
an amplitude Γ which corresponds to the quantum numbers JP = 0+ (we’ll
worry about positive C-parity later, as soon as we have a construction).

To know what we are doing, let us first discuss the dependence on the
variables once more, but in more detail. In terms of the four-vectors γµ, qµ,
and Pµ we realize that only γµ introduces a Dirac structure different from 1.
Generally, we need to find all possible and linearly independent Dirac structures
obtainable from the vectors given here. Once these structures, called Dirac
covariants, are found we know that any function multiplying them can only
depend on scalar products of the four vectors qµ, and Pµ, since the Dirac part
is already taken care of. In other words, for J = 0 one can write the BSA as
a sum over Dirac covariants Ti multiplied by Lorentz-invariant functions Fi in
the way

Γ(P ; q) =

NJ∑
i=1

Ti(γ;P ; q) Fi(P ; q) =

NJ∑
i=1

Ti(γ;P ; q) Fi(P
2, q2, q · P ) , (3.42)

where the number of covariants NJ depends on the spin J of the meson and
NJ = 4 for J = 0 (NJ = 8 for all other values of J – we’ll see below where that
comes from).

Now we can attack the question what the covariants for JP = 0+ are.
Since we want scalars, we can use scalar products of the four-vectors at hand.
In addition we’ll be able to use products of those scalar products. The goal
is to arrive at a linearly independent and complete set of covariants. We will
demonstrate this construction explicitly for the scalar case and do more, namely
construct an orthogonal basis in Dirac space. The starting point are, as already
mentioned, the four-vectors at hand, γµ, qµ, and Pµ. In particular, we have
already shown that a number of the scalar products constructed from this set are
proportional to 1, so this is our first basis element. To see linear independence
or orthogonality, we actually need a scalar product, which in this case is defined
for two matrix-valued structures A and B as the trace of the matrix product of
A and B:

〈A|B〉 := Tr(A ·B) (3.43)

The remaining two scalar products from our set of four-vectors are /q and /P .
Now let us check orthogonality in these cases.

Tr(1 · /q) = Tr(/q) = 0 = Tr(/P ) = Tr(1 · /P )

so both /q and /P are orthogonal to 1, but are they also orthogonal to each other?
Obviously not, since

Tr(/q · /P ) = 4q · P , (3.44)

which can be proven using Eq. (2.47) and the fact that cyclic permutation of all
factors inside the trace doesn’t change the value of the trace. However, these
two terms can be made orthogonal by a small modification of one of them,
namely

/q −→ /q − /P q · P
P 2

,

51



such that

Tr

(
(/q − /P q · P

P 2
) · /P

)
= 0 . (3.45)

It is interesting to note at this point that the construction just introduced is
an example for a transversal projection with respect to the total momentum
P . In general one writes, denoting transversality by the superscript T , for an
arbitrary four-vector V µ

V T
µ := Vµ − Pµ

V · P
P 2

. (3.46)

This will be useful below when we discuss BSAs of mesons with higher spin.
So far, so good. But have we yet found all linearly independent basis ele-

ments? Since we have already used all possible scalar products that our four-
vectors permit us to construct, the only possibility to find more basis elements
is to investigate products of these scalar products that are linearly independent
with respect to all the basis elements already known. Obviously, multiplying
1 with either /q or /P doesn’t bring anything new. What about /q/q? A short
calculation shows that

/q/q = q2 1 , (3.47)

the analogous result holds for /P/P . So those don’t bring anything new, either.
The next possibility is /q/P , which is new, i.e., it is linearly independent with
respect to the other three. We’ll prove this by showing that, actually, the
construction /q/P−/P/q = [/q, /P ] is orthogonal to the three elements that we already
have. Indeed, we find

Tr (1 · [/q, /P ]) = 0 (3.48)

Tr

(
(/q − /P q · P

P 2
) · [/q, /P ]

)
= 0 (3.49)

Tr (/P · [/q, /P ]) = 0 . (3.50)

The remaining question is whether or not any further linearly independent
covariants can be found. To clarify that the answer is no, it is enough to argue
that any products of [/q, /P ] with /q or /P or itself can be reduced to already known
covariants via the Clifford algebra, Eq. (2.47). As a result, the basis in Dirac
space for a scalar meson with JP = 0+ can be given by

T1 = 1 T2 = i /P
T3 = i /q T4 = [/q, /P ]

(3.51)

Before we determine the C-parity of these covariants and discuss the C-parity
of the corresponding amplitude Γ, we note that a pseudoscalar-meson set of
covariants can be constructed from Eq. (3.51) by multiplication of each covariant
with a factor γ5, since γ5 has negative parity and in this way one exactly gets
pseudoscalar transformation properties of each covariant. The result is

T1 = i γ5 T2 = γ5 /P
T3 = γ5 /q T4 = i γ5 [/q, /P ]

(3.52)
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Now let us investigate the C-parity of each of the covariants in Eqs. (3.51) and
(3.52). Trivially, the C-parity of 1 is positive. For /q we have a combination of

qµ → −qµ and (CγµC−1)T = −γµ

under C such that the C-parity of their product is positive. Since Pµ doesn’t
change its sign under charge conjugation, /P has negative C-parity. To see that
[/q, /P ] has positive C-parity, we explicitly evaluate

(C[/q, /P ]C−1)T = (C(/q/P − /P/q)C−1)T = (C/q/PC−1)T − (C/P/qC−1)T

= (C/qC−1C/PC−1)T − (C/PC−1C/qC−1)T

= (−/P/q)− (−/q/P ) = [/q, /P ] (3.53)

Now that we know all C-parities for the covariants in the scalar case, Eq. (3.51),
we can put everything together and go back to Eq. (3.42): Assuming that the
total amplitude for a scalar meson with JPC = 0++ is demanded to have
positive C-parity, with the C-parities of T1, T2, T3, and T4 being +, −, +, and
+, one must have C-parities +, −, +, and + as well for F1, F2, F3, and F4. But
how can we guarantee this? Remember that the variables that the Fi depend
on are P 2 (which has positive C-parity), q2 (which has positive C-parity), and
q · P (which has negative C-parity). So to get a function Fi with even (odd)
C-parity one needs to ensure that Fi is a function symmetric (antisymmetric)
in q · P . In this way one can construct amplitudes with arbitrary parity and
C-parity.

Let us quickly do the same analysis for the pseudoscalar covariants in
Eq. (3.52). There γ5 has positive C-parity, which is also important to know
for the following analysis. Next, one has

(Cγ5/PC
−1)T = (Cγ5C

−1C/PC−1)T = −/Pγ5 = γ5/P (3.54)

and, analogously

(Cγ5/qC
−1)T = (Cγ5C

−1C/qC−1)T = /qγ5 = −γ5/P , (3.55)

since γ5 anticommutes with γµ. Finally,

(Cγ5[/q, /P ]C−1)T = γ5[/q, /P ] . (3.56)

Thus, in order to have a pseudoscalar meson with JPC = 0−+ one needs C-
parities +, +, −, and + as well for F1, F2, F3, and F4.

The next task is to investigate the possibilities to construct a Dirac basis for
the BSA of a meson with spin J = 1. In order to achieve this, we must create an
object that transforms like a four-vector (or axialvector) under Lorentz trans-
formations. Since we already have constructed a Lorentz-scalar amplitude with
four structures, we can construct a Lorentz-vector basis by multiplying those
four structures with the three four-vectors that are at hand. More precisely one
thereby finds the 12 covariants

Tµ1 = γµ Tµ2 = γµ /q Tµ3 = γµ /P Tµ4 = γµ [/q, /P ]
Tµ5 = qµ1 Tµ6 = qµ /q Tµ7 = qµ /P Tµ8 = qµ [/q, /P ]
Tµ9 = Pµ1 Tµ10 = Pµ /q Tµ11 = Pµ /P Tµ12 = Pµ [/q, /P ]

(3.57)
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At this point, we have to implement a property of massive spin-1 particles,
namely that they are transverse, i.e. there is a set of polarization vectors
εµ(λ, P ), λ = 1, 2, 3 such that Pµεµ(λ, P ) = 0. In other words, the 12 covari-
ants just defined have to be transversely projected via Eq. (3.46) with respect
to Pµ. In addition, for some cases, the resulting covariant doesn’t have a well-
defined C-parity. γT

µ
[/q, /P ] is such an example, in which case one obtains a

covariant with a well-defined C-parity by adding a corresponding term, in this
example, −qT µ /P . One also sees immediately that all covariants in Eq. (3.57)
that are proportional to Pµ vanish by this projection. So one remains with
eight transverse covariants, e.g.

Tµ1 = γT
µ

Tµ2 = qT
µ
/q

Tµ3 = qT
µ
/P Tµ4 = γT

µ
[/q, /P ]− qT µ /P

Tµ5 = i qT
µ

1 Tµ6 = i (γT
µ
/q − /q γT µ)

Tµ7 = i γT
µ
/P Tµ8 = i qT

µ
[/q, /P ]

(3.58)

Here, T3 and T6 have positive C-parity, the others negative. To obtain a vector
state with JPC = 1−−, F3 and F6 must be odd functions of q · P , the others
even. A basis for an axialvector state can be constructed analogously to the
construction of the pseudoscalar from the scalar state in the J = 0 case, namely
by multiplication of each covariant with a factor γ5.

A general prescription for the construction of a BSA for any spin J is given
in the following. First, note that the BSA for a meson with spin J is given by

Γµν...(q;P ; γ) =

NJ∑
i=1

Tµν...i (q;P ; γ) Fi(q
2, q · P, P 2) , (3.59)

where the generalized scalar product for the covariants Tµν...i is defined via the
Dirac trace ∑

µν...

Tr[Tµν...i Tµν...j ] = tijf(i, j) . (3.60)

One may also choose the basis elements orthogonal such that tij = δij , with
the f(i, j) functions of q2, P 2, and q · P , or orthonormal such that in addition
f(i, j) = 1 for all i, j. The sum is carried out over the J indices µ, ν, . . ..

Next, define the projections

qTµ := qµ − Pµ
q · P
P 2

, (3.61)

γTµ := γµ − Pµ
/P

P 2
, (3.62)

γTTµ := γµ − Pµ
/P

P 2
− qTµ

/qT

(qT )2
, (3.63)

gTµν := gµν −
PµPν
P 2

(3.64)

as well as

σq,P := i/2 [/q, /P ] (3.65)
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and keep in mind the 4 orthogonal scalar covariants

1, /P, /qT , iσq,P . (3.66)

Then, to consider states of any particular spin J , one has to construct
Lorentz-tensors of rank J which are totally symmetric, transverse in all open
indices and Lorentz-traceless: such an object has the 2J + 1 spin degrees of
freedom as demanded in quantum mechanics of a massive particle. These re-
strictions, together with the algebra properties of the Dirac matrices, lead to
eight covariant structures for all J ≥ 1. In particular, one can define two tensor
structures Mµν and Nµν such that Nµν...τ is the traceless part of

qTµ q
T
ν . . . qTτ (3.67)

and Mµν...τ is the traceless part of the totally symmetric sum constructed from

γTTµ qTν . . . qTτ . (3.68)

Each of these multiplied by the four terms in (3.66) defines four rank-J tensor
covariants, in total eight, orthogonal in the sense of Eq. (3.60).

To make this a bit more concrete, we now generate orthogonalized tensor
covariants, i. e., JP = 2+ and obtain as a first step the symmetric and transverse
expressions

M̃µν = γTTµ qTν + qTµ γ
TT
ν and (3.69)

Ñµν = qTµ q
T
ν , (3.70)

which automatically satisfy Eq. (3.60). The next step is to implement the
tracelessness, which is equivalent to orthogonality with respect to gTµν . This
yields

Mµν = M̃µν − gTµν
M̃ρσg

T
ρσ

(gT )2
(3.71)

Nµν = Ñµν − gTµν
Ñρσg

T
ρσ

(gT )2
, (3.72)

which is the desired structure, and by multiplication with the four scalar covari-
ants in (3.66) gives the eight desired orthogonal tensor covariants. Subsequently,
normalization can be achieved via

T̂µν...i =
Tµν...i√∑

αβ... Tr[Tαβ...i · Tαβ...i ]
.

3.9 Exercises

Exercise 3.1 Derive the canonical normalization condition for the BSA Γ from
the condition for χ, Eq. (3.34).
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Exercise 3.2 Based on Eq. (3.40), consider the following simple iteration pro-
cedure: Insert an initial guess for the amplitude vector Γ on the right-hand
side of (3.40), say Γ0. Then, compute the result, i.e., the left-hand side,
which is proportional to Γ1, the ”improved guess”, reinsert Γ1 on the
r.h.s. and repeat the procedure until convergence is achieved.

In this procedure, argue

(a) how one can extract λ

(b) why this procedure yields the largest eigenvalue λ0 of K̃

(c) how one can obtain the next-to-largest eigenvalue λ1, and further
eigenvalues

(d) how a convergence criterion could be formulated

Exercise 3.3 Prove

(a) Eqs. (3.48), (3.49), and (3.50)

(b) Eq. (3.56)

Exercise 3.4 Analyze the C-parities of the covariants Nr. 4, 6, and 8 in
Eq. (3.58) and show that they are indeed as indicated after the equa-
tion. In addition, starting from the more general T4 in Eq. (3.57), show
how one can obtain an expression of definite C-parity, namely the one
given in Eq. (3.58).

Exercise 3.5 Prove that a totally symmetric tensor of rank J in n space-time
dimensions has (

J + n− 1
n− 1

)
independent components. Prove furthermore, starting from the actual
case n = 4, that demanding Lorentz-tracelessness and transversality re-
duces this number to the desired 2J + 1.

Achievement

After studying this section and performing the exercises the reader should be
able and feel confident to do the following:

• Understand the differences between the homogeneous and inhomogeneous
versions of the BSE

• Sketch and compare the solution strategies for these two versions of the
BSE

• Construct Dirac covariants for 2-fermion systems and determine their ba-
sic properties for various values of the total spin of the 2-particle state
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Chapter 4

Example Model Calculations

In the last section we have introduced the BSE and specified how to construct
the BSA, e. g., for a fermion-antifermion bound state with spin J , but without
actually going into any details with respect to what S and K concretely are or
where they come from. Still this enabled us to discuss general solution strategies
like inserting the appropriate structure into the BSE and solving the equation
by projecting on each covariant via the corresponding trace relations to obtain
coupled integral equations for the amplitudes Fi. With the general notion of
dealing with matrices and vectors, we arrived at viable approaches to finding
bound-state masses or rather values of P 2 for which the homogeneous BSE is
solved.

Now it is time to detail the interaction kernel K and the dressed propagators
of the constituents of the bound states and obtain the corresponding concrete
solutions. The context for this is provided to us by the Dyson-Schwinger equa-
tions of QCD, which we’ll introduce and make use of in the hands-on spirit.

4.1 Dyson-Schwinger Equations in a Nutshell

Although there aren’t many in-depth treatments of Dyson-Schwinger Equations
(DSEs) in textbooks, the subject is reasonably covered in several excellent re-
cent review articles which can be found in the bibliography at the end of these
notes. For our purposes and context, the most important information about
DSEs is summarized here:

• The name comes from the works of Dyson (1949) and Schwinger (1951),
who showed that, from the field equations of a quantum field theory, one
can derive a set of coupled integral equations, which relate the Green
functions of a theory to each other.

• This set of equations is called the set of Dyson-Schwinger equations (equiv-
alently Schwinger-Dyson equations in part of the literature).

• The set of DSEs is an infinite and coupled set of nonlinear integral equa-
tions, satisfied by the Green functions; there is one particular equation
for each Green function.
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• In general, the DSE for an n-point function involves other Green functions
of both lower and higher order

• The question arises how one can get actual solutions for this infinite tower
of coupled equations, which is possible via an expansion or truncation:

• One possibility (usually mentioned in textbooks, but inappropriate for our
purposes) is perturbation theory: although the DSEs are non-perturbative
a priori, they can be used to generate every diagram in perturbation
theory via a weak-coupling expansion. We will not use such an expansion.

• The other possibility is that of a truncation scheme: a truncation of the set
of DSEs means that one first selects a subset of equations to be solved ex-
plicitly, and then makes Ansätze for all Green functions, whose equations
are not solved explicitly (this will become clear in the example below).
The truncation scheme then guides the practitioner from a simpler trun-
cation to a more complicated one in a way that, e. g., respects symmetries
of the theory.

• Symmetries are represented in this context by Ward-(Green)-Takahashi
or Slavnov-Taylor identities. These are relations (additional to the DSEs
themselves) between Green functions which can be used as constraints
on several occasions to, e. g., determine the quark-antiquark interaction
kernel, or properties of vertices.

Below we will examine in some detail the DSE for the quark propagator, which
provides part of the input for our example study of the meson BSE further
below.

4.2 Euclidean Space

It is of computational advantage to work (calculate/solve equations) in Eu-
clidean rather than Minkowski space. For example, it is possible to simply
use spherical variables in four dimensions in the integration. In terms of inter-
pretation one can choose to define the particular quantum field theory under
consideration in Euclidean space from the very beginning and calculate every-
thing from there.

Since we are dealing with integral equations in the following, we’ll shortly
summarize all necessary ingredients and their properties here. In quantities and
equations which can be expressed as functions of the metric one replaces the
Minkowski gµν by the Euclidean gµν = δµν . As a result of this simplification,
co- and contravariant indices are no longer distinguishable and can be written
either up or low on expressions throughout any calculation. To avoid confusion,
it is also common to transform a vector’s Minkowski-space time-component a0
into a fourth component a4 in Euclidean space. The scalar product of two four
vectors a and b then becomes a · b = a4b4 + ~a · ~b and one has a2 = a · a < 0
for timelike and a2 > 0 for a spacelike vector a, respectively (which is exactly
opposite to the Minkowski-space situation).
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Regarding integration we consider a four momentum vector q and param-
eterize its components via the radial variable q2 ∈ [0,∞) and three angles
β, ϑ ∈ [0, π], and ϕ ∈ [0, 2π). One has

qµ =
√
q2


sinβ sinϑ cosϕ
sinβ sinϑ sinϕ

sinβ cosϑ
cosβ

 (4.1)

The corresponding momentum-space integration measure is given by∫
d4q =

∫ ∞
0

q2

2
d(q2)

∫ β

0
sin2 βdβ

∫ π

0
sinϑdϑ

∫ 2π

0
dϕ =

=

∫ ∞
0

x

2
dx

∫ 1

−1

√
1− z2dz

∫ 1

−1
dy

∫ 2π

0
dϕ (4.2)

where one defines x := q2, z := cosβ, and y := cosϑ. We’ll get back to this
below when it is time to parameterize the momentum variables in the quark
DSE and the BSE.

4.3 The Quark Propagator and its DSE

The free propagator S(q) for a fermion of mass m and four-momentum q in
Euclidean space (with a certain sign convention) is given by

S(q) =
1

i/q +m1
. (4.3)

Dealing with quarks, one has to ask how quarks, which are actually not observed
as free particles in our detectors, can be described in this context. The answer is
the dressed quark propagator, in which the two scalar dressing functions A(q2)
and B(q2) modify S in Eq. (4.3) to its most general form,

S(q) =
1

i/qA(q2) + 1B(q2)
. (4.4)

Bringing the Dirac structure of the propagator from the denominator to the
numerator, we get

S(q) =
−i/qA(q2) + 1B(q2)

q2A2(q2) +B2(q2)
, (4.5)

which is sometimes also written as

S(q) = −i/qσv(q2) + 1σs (4.6)

with

σv(q
2) =

A(q2)

q2A2(q2) +B2(q2)
and σs(q

2) =
B(q2)

q2A2(q2) +B2(q2)
. (4.7)

The subscripts v and s refer to the vector and scalar parts of the propagator,
respectively. The dressing functions σv, σs, A, and B are functions of the
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= +
−1−1

Figure 4.1: The DSE for the quark propagator

four-momentum squared q2 only, i. e., all the Dirac structure is already given
explicitly.

Going back to the form in Eq. (4.4), one can define the quark wave-function
renormalization Z(q2) := 1/A(q2) and the quark mass function M(q2) :=
B(q2)/A(q2) to write

S(q) =
Z(q2)

i/q + 1M(q2)
(4.8)

and also

S(q) = Z(q2)
−i/q + 1M(q2)

q2 +M2(q2)
, (4.9)

which makes the analogy to a free propagator and the motivation for the term
“mass function” more evident.

Now that we have clarified the structure of the quark propagator, we’ll
have a look at its DSE. The quark DSE in QCD essentially describes how the
various interactions of quarks and gluons among each other influences quark
propagation. The inverse of the dressed quark propagator S−1(p) is obtained
from the inverse of the bare (free) propagator S−10 (p) via adding the quark
self-energy Σ(p). The self-energy involves integration over an internal (loop)
momentum q and depends on the dressed quark propagator S(q) itself, but also
on the (so far unknown) dressed gluon propagator Dµν(p− q) and the bare and
dressed quark-gluon vertices γµ λ

a

2 and Γaν(q; p), respectively. In addition, the
coupling constant g appears. Putting all this together, one obtains the quark
DSE or QCD gap equation

S−1(p) = S−10 (p) + Σ(p) (4.10)

= i/p+ 1mq +

∫
d4q

(2π)4
g2Dµν(p− q)λ

a

2
γµS(q)Γaν(q; p) (4.11)

which is depicted in Fig. 4.1.
For our present purposes the following remarks are important: First of all,

we notice that the equation is nonlinear (in contrast to the BSE) and we’ll
discuss solution strategies below. Then, this integral equation for the quark
two-point function involves one other two-point function (the gluon propaga-
tor) and a three-point function, the quark-gluon vertex. If we knew these
two additional functions, we could solve the equation for S “immediately” (at
least in principle). However, Dµν and Γaν satisfy their own DSEs, involving
S, themselves, and other Green functions like, e. g., the three-gluon vertex or
the four-gluon vertex. These, in turn, satisfy their own DSEs, involving other
(higher) Green functions, etc. This is characteristic of the infinite coupled
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tower of DSEs. In this context, a truncation helps by, e. g., making Ansätze
for both these unknown functions from general or particular properties of the
theory under consideration and/or phenomenological input, and then solving
the equation under the assumption that the Ansätze give a reasonable account
of what one would have obtained by actually and self-consistently solving the
entire tower of DSEs. Before we actually give an example of such a truncation
and explore its consequences, we sketch simple solution strategies for the quark
DSE in the following.

The first step towards a solution is turning Eq. (4.11) into two coupled inte-
gral equations for the dressing functions A and B (or, alternatively, for Z and
M) via suitable Dirac projections involving different projectors and taking the
Dirac-trace of the resulting equations. The next step is finding a solution strat-
egy for solving the coupled integral equations for, say, A and B. As mentioned
above, the quark DSE is nonlinear, which doesn’t a priori preclude success of a
simple iterative approach. However, more sophisticated techniques can be help-
ful, one of which we’ll now introduce. This particular technique is analogous to
the Newton method for finding the zero of a function F (x), where one starts at
an initial value x0 and obtains the next guess x1 for the zero by constructing a
tangent to F (x) at the point (x0, F (x0)) and intersecting it with the abscissa.
This yields the procedure

xi = xi−1 −
(
dF (x)

dx

)−1∣∣∣∣∣
x=xi−1

F (xi−1) . (4.12)

Now consider a matrix equation:

~x = ~a+ ~K(~x) (4.13)

with the constant vector ~a and the vector-valued kernel function ~K(~x). Define
the vector-valued function

~F (~x) := ~x− ~a− ~K(~x) . (4.14)

To find solutions to the original equation (4.13), one must now find zeros of
~F (~x), which we achieve by a method along the lines of (4.12) and get

~xi = ~xi−1 −
(

1− ∂ ~K(~x)

∂~x

)−1∣∣∣∣∣∣
~x=~xi−1

(
~xi−1 − ~a− ~K(~xi−1)

)
. (4.15)

Remember that we used a special case of this method for the inhomogeneous
BSE above, namely that ~K(~x) = K ·~x with the matrix K, which (corresponding
to Eq. (3.38)) yields

~xi = (1−K)−1 · ~a . (4.16)

Obviously, this requires “only one iteration step” and the subscript i on the
left-hand side of the equation can be dropped to immediately give the solution
for ~x.
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Figure 4.2: The momentum flow in the BSE (adapted from Ref. [10])

4.4 The BSE Kernel: Concerning S

A priori, it is not clear what the BSE kernel for a quark-(anti)quark system is.
The first early applications of the BSE were in nuclear physics, where people
studied N -N systems (scattering). The interaction for such a system was pro-
posed to be π-exchange. In this setting the simplest (leading) kernel in the BSE
is a ladder kernel proportional to the square of the πNN coupling. Naturally,
the full N -N interaction is more complicated than this, but as a first step, this
particular interaction provided some treatability of the problem.

In meson studies in QCD, the situation is similar: we are dealing with quarks
and antiquarks, interacting via gluons. But first, a few general statements are
in order: formally, part of the BSE kernel is the quark-(anti)quark interaction,
the other part is the product of the two constituent dressed propagators. We’ll
deal with them first, after a short outline of the overall kinematical setup of
the BSE and its components. As a reminder, the BSE (now in Euclidean space
and omitting all sorts of indices, but paying attention to the variables) reads

Γ(k;P ) =

∫
d4q

(2π)4
K(P ; k; q) S(q+) Γ(q;P ) S(q−) ; (4.17)

the corresponding momentum flow on the right-hand side of this equation is
illustrated in Fig. 4.2. The Euclidean four-momenta are: the total momentum of
the qq̄-system P , and the corresponding relative momenta k and q as well as the
quark momentum q−+ = q+η+P and the antiquark momentum q− = q−η−P
(as already stated above in a slightly different manner, η± can take values
∈ [0, 1] and η+ + η− = 1). To fully appreciate the situation when we work
everything out concretely, let us start by parameterizing the four-momenta P ,
k, and q in terms of the general setup given above in Eq. (4.1), but with the
possibility to freely choose the (4D)-direction of P , then almost freely k. One
has:

Pµ = iM


0
0
0
1

 , kµ =
√
k2


0
0

sinβk
cosβk

 , qµ =
√
q2


sinβq sinϑ cosϕ
sinβq sinϑ sinϕ

sinβq cosϑ
cosβq

 .

(4.18)
To understand the form of P and in particular the appearance of iM , let us
recall that in Euclidean space we have the homogeneous BSE under the assump-
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tion of the existence of a bound state solution at P 2 = −M2 with M being the
bound state’s mass. Using the notation x, y, z defined above after Eq. (4.2),
we get

kµ =
√
k2


0
0√

1− z2k
zk

 , qµ =
√
q2


cosϕ

√
1− z2q

√
1− y2q

sinϕ
√

1− z2q
√

1− y2q
yq
√

1− z2q
zq

 . (4.19)

Next, we investigate the Lorentz-invariant variables in the problem. We have,
aside from the trivial P 2, q2, and k2,

q · P = iM
√
q2zq (4.20)

k · P = iM
√
k2zk (4.21)

q · k =
√
q2
√
k2(zqzk + yq

√
1− z2q

√
1− z2k) . (4.22)

One should note already at this point that in general it is more advantageous to
keep the complex variable

√
P 2 in favor of iM , since the latter is only reasonable

for negative values of P 2 as encountered in the solution of the homogeneous
BSE. When solving the inhomogeneous vertex-BSE, on the other hand, one has
no restriction like this and P 2 is better set up as an input, which could, in
general, be a complex number. Still, for the following demonstration focussed
on the homogeneous BSE in particular, explicit factors of iM are written for
instructional purposes.

The corresponding problem arises from the quark propagator arguments
under the integral on the right-hand side of Eq. (4.17), which are q+ and q−.
Written out explicitly, one sees that with the all-real components of the inte-
gration momentum q and real M and η±, both q+ and q− are actually complex
four-momenta. That said, it is not surprising to see also their squares (which
appear as the arguments of the dressing functions in the quark propagators in
Eq. (4.17)) turn out to be complex. More details can be easily obtained by
writing q2+ and q2− in terms of the Lorentz-invariants given above as

q2+ = q2 − η2+M2 + 2iη+M
√
q2zq (4.23)

q2− = q2 − η2−M2 − 2iη−M
√
q2zq . (4.24)

As an immediate consequence, the domain in the complex q2+, sampled via a
numerical solution of the BSE in Eq. (4.17)), on which the quark propagator
S(q+) needs to be known is surrounded by a parabolic shape depicted in Fig. 4.3.

Let us now summarize the situation just described as well as some of its
consequences:

• The quark propagator is needed for complex arguments as input in the
BSE, if P 2 < 0
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Figure 4.3: The complex domain of the argument of the quark propagator in
the BSE as sampled via the momentum configuration in Euclidean space. The
cross inside the parabola is the origin, the coordinates of the intersection points
with the real and imaginary axes are given explicitly in the figure (adapted
from Ref. [11])

• The sampling region is a parabolic domain in the q2±-planes, whose size is
characterized by η± and M

• For large M (heavier states) a large region in such a complex plane must
be sampled, which is numerically nontrivial

• η± can be used to manipulate the situation by shifting parabola size from
one constituent propagator to the other, which is particularly useful for
unequal-mass constituents

• It is possible (i. e., it happens) that there are singularities of the prop-
agator functions σv and σs at finite q2± in the complex plane (sketched
in Fig. 4.3 by two small x outside the parabolic region). Then, for sim-
ple/standard numerical methods there is a limiting bound-state mass, for
which the integration domain starts to overlap these singularities. Larger
bound-state masses can be studied only using more appropriate numerical
methods or sophisticated extrapolation techniques.

To finish this section it is instructive to mention the sources for the data/values
needed for S in the BSE during a solution. The simplest possibility would sim-
ply be to use free propagators, i. e., Z(q2) = 1 and M(q2) = m. While this may
be reasonable in general, it is not for our considerations of mesons as bound
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Figure 4.4: The rainbow-truncated quark self-energy.

states of dressed (anti)quarks. The next and still simple possibility is to use
Ansätze for the propagator dressing functions which yield properties desired of
quarks. This is good enough for, e. g., purely phenomenological approaches to
hadron properties, but cannot reveal much information about the dynamics of
the system as it would be obtained from an underlying quantum field theory.
Thus, the method of choice in the following is to solve the quark DSE as intro-
duced above and analytically (in practice numerically) continue its solutions to
complex values as needed in the BSE setup. To have a consistent dynamical
setup of both the DSE and the BSE kernels (as described below) is one of the
keys to phenomenological success.

4.5 The BSE Kernel: Concerning K

What remains to be found is the form of K as it appears in Eq. (4.17). Since
we only know that the kernel should contain all possible interactions resulting
from the theory under consideration, we need some starting point for the con-
struction of a tractable problem. One possibility already mentioned above is
that of a truncation; however, such a step should be performed in a reason-
able manner. On a general note, one can find from the functional formalism
that K = −δΣ/δS, i. e., the two-particle interaction kernel is the functional
derivative of the one-particle self-energy with respect to the dressed particle
propagator, which one can attempt to satisfy. More concretely, as a guiding
principle for truncating the DSEs and at the same time finding a consistent ker-
nel for the BSE one can make use of the symmetries of the underlying theory.
These are provided by Ward-Takahashi or Slavnov-Taylor identities, relations
which constrain the Green functions beyond their satisfaction of the DSEs them-
selves. In the context of meson studies with the background of QCD one has,
e. g., the vector and axial vector (and color singlet) Ward-Takahashi identities
as possibilities to constrain the integral equation kernels (these two particular
identities are related to charge conservation and chiral symmetry, respectively).
It was found some time ago that a very simple truncation of the set of quark
DSE + quark-antiquark BSE, the so-called rainbow-ladder truncation can ac-
tually be employed to satisfy both identities, which is a promising setup for a
phenomenological model of hadron properties.

In more detail, employing the rainbow-ladder truncation in our system of
coupled integral equations means that the quark DSE, Eq. (4.11), neglecting
renormalization/regularization issues completely here, in the rainbow truncation
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Figure 4.5: The ladder-truncated quark-antiquark BSE interaction kernel.

becomes

S−1(p) = i/p+ 1mq +
4

3

∫
d4q

(2π)4
G((p− q)2)Df

µν(p− q)γµS(q)γν , (4.25)

where the factor 4/3 comes from the color trace, Df
µν(p − q) is the free gluon

propagator, and G((p − q)2) is an effective interaction that depends on the
gluon momentum-squared. For a graphical representation of the rainbow quark
self-energy, see Fig. 4.4.

Correspondingly, the BSE in ladder truncation reads (see also Fig. 4.5 for a
graphical representation)

Γ(p;P ) = −4

3

∫
d4q

(2π)4
G((p− q)2)Df

µν(p− q)γµS(q+)Γ(q;P )S(q−)γν . (4.26)

With these consistent kernels one can show that general results of the theory
are preserved in the truncation. For example, in the chiral limit (i. e., for
vanishing current quark mass) one obtains a zero-mass pion solution from the
homogeneous pseudoscalar BSE without fine-tuning the effective interaction.

4.6 Equations for Components and Chebyshev Ex-
pansion

Starting from, e. g., the ladder BSE in Eq. (4.26) one has to deal with the Dirac
structure of the equation and BSA to arrive at a set of coupled integral equations
for scalar components. This is achieved by projecting onto one of the BSA’s
Dirac covariants by multiplying both sides of the equation with the particular
covariant Ti (Lorentz indices are omitted here for brevity) and taking the Dirac
trace. In the most straight-forward case of a set of orthogonal covariants, the
left-hand side of the equation,

Γ(p;P ) =

NJ∑
j=1

Tj(p;P ; γ)FjP
2, p2, p · P , (4.27)

is reduced to the i-covariant’s normalization times the component Fi, i. e., a sin-
gle term. On the right-hand side the kernel is projected as well, and via Γ(q;P )
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under the integral and its expansion in covariants times components a matrix
structure emerges, which couples the integral equations for the Fi together. A
typical equation of this kind is satisfied by FjP

2, p2, p · P , where P 2 is actually
a parameter with respect to the solution process. This reduces the variables to
the radial p2 and the cosine zp. At this point one can apply numerical methods
for the solution of the emerging matrix equation by discretizing the momentum
and cosine variables and, e. g., proceed with standard iteration techniques in
two variables, which makes the kernel comparatively large.

An alternative, advantageous and widely used in the calculations of hadron
spectra is to apply the momentum discretization only to

∫
d(q2) and to deal

with the z-dependence by an expansion in Chebyshev polynomials of the second
kind. The components are then written as

F i(q2, zq) =

Nz∑
j=1

jFi(q
2)Uj(zq) , (4.28)

with jFi(q
2) the so-called Chebyshev moments, which retain only the functional

dependence on q2 (and in principle also P 2). The number of terms Nz taken
into account is finite in practice, but infinite in principle. The Chebyshev
polynomials of the second kind Uj(z) satisfy the orthogonality relation

2

π

∫
dz
√

1− z2 Ui(z)Uj(z) = δij . (4.29)

To obtain a matrix structure not only in the covariants, but also in the Cheby-
shev moments, the above expansion is inserted into the Dirac-projected equa-
tion resulting from Eq. (4.26), and is then projected further on one moment by
use of Eq. (4.29).

4.7 Exercises

Exercise 4.1 Consider the quark DSE in the form (4.25), ignore regulariza-
tion/renormalization issues, and from there derive two coupled and non-
linear integral equations for the functions A(p2) and B(p2).

Exercise 4.2 Consider the effective interaction in Eq. (4.25) to be

G(k2)Df
µν(k) = (2π)4D δ4(k)(δµν −

kµkν
k2

) = (2π)4D δ4(k)
3

4
δµν , (4.30)

where k = p−q, andD is a constant scale (a form like this was prominently
used by Munczek and Nemirovsky). In this simple model,

(a) solve the quark DSE explicitly in the chiral limit, i. e., give expres-
sions for A(p2), B(p2), M(p2), σv(p

2), and σs(p
2) under the assump-

tion that m = 0. Note here that the equations should be solved
under the assumptions that A(p2), B(p2) be real and non-negative
for real p2 and that they have the asymptotic behavior A(p2) → 1
and B(p2)→ m for p2 →∞.
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(b) consider the pseudoscalar homogeneous BSE (4.26) in the chiral
limit. Observe that, since the BSE kernel contains the delta-function
in the difference of relative momenta q and we are considering bound
states, we set q = 0 and terms proportional to q don’t contribute in
any BSA, which leaves only two terms for the pseudoscalar case.
Construct the BSE as a 2× 2 matrix eigenvalue equation.

(c) show that this eigenvalue equation is solved for P 2 = 0 (the pion is
massless in the chiral limit!), if both covariants are retained. Investi-
gate, whether this situation changes if one uses only the γ5 covariant.

(d) consider next the homogeneous vector-meson BSE and compute the
vector-meson mass, again in the chiral limit. In this case, use the vec-
tors Pµ and the polarization vector εµ together with γµ to construct
the non-vanishing covariants of the BSA.

(e) argue, why one cannot study any state with J > 1 in this model.

(f) show that the homogeneous axial-vector and scalar BSEs in this
model (again in the chiral limit) don’t have any solutions.

(g) argue, why one doesn’t obtain radial meson excitations in this model.

Achievement

After studying this section and performing the exercises the reader should feel
confident to do the following:

• Brag about having solved a BSE by hand.
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